Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 18(1): 49-54, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36411375

RESUMEN

Motional control of levitated nanoparticles relies on either autonomous feedback via a cavity or measurement-based feedback via external forces. Recent demonstrations of the measurement-based ground-state cooling of a single nanoparticle employ linear velocity feedback, also called cold damping, and require the use of electrostatic forces on charged particles via external electrodes. Here we introduce an all-optical cold damping scheme based on the spatial modulation of trap position, which has the advantage of being scalable to multiple particles. The scheme relies on programmable optical tweezers to provide full independent control over the trap frequency and position of each tweezer. We show that the technique cools the centre-of-mass motion of particles along one axis down to 17 mK at a pressure of 2 × 10-6 mbar and demonstrate its scalability by simultaneously cooling the motion of two particles. Our work paves the way towards studying quantum interactions between particles; achieving three-dimensional quantum control of particle motion without cavity-based cooling, electrodes or charged particles; and probing multipartite entanglement in levitated optomechanical systems.

2.
Phys Rev Lett ; 127(12): 123605, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34597065

RESUMEN

Rotational optomechanics strives to gain quantum control over mechanical rotors by harnessing the interaction of light and matter. We optically trap a dielectric nanodumbbell in a linearly polarized laser field, where the dumbbell represents a nanomechanical librator. Using measurement-based parametric feedback control in high vacuum, we cool this librator from room temperature to 240 mK and investigate its heating dynamics when released from feedback. We exclude collisions with residual gas molecules as well as classical laser noise as sources of heating. Our findings indicate that we observe the torque fluctuations arising from the zero-point fluctuations of the electromagnetic field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA