Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2784: 25-44, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502476

RESUMEN

Candida albicans is the most prevalent human fungal pathogen. Its pathogenicity is linked to the ability of C. albicans to reversibly change morphology and to grow as yeast, pseudohyphae, or hyphal cells in response to environmental stimuli. Understanding the molecular regulation controlling those morphological switches remains a challenge that, if solved, could help eradicate C. albicans infections.While numerous studies investigated gene expression changes occurring during C. albicans morphological switches using bulk approaches (e.g., RNA sequencing), here we describe a single-cell and single-molecule RNA imaging and analysis protocol to measure absolute mRNA counts in morphologically intact cells. To detect endogenous mRNAs in single fixed cells, we optimized a single-molecule fluorescent in situ hybridization (smFISH) protocol for C. albicans, which allows one to quantify the differential expression of mRNAs in yeast, pseudohyphae, or hyphal cells. We quantified the expression of two mRNAs, a cell cycle-controlled mRNA (CLB2) and a transcription factor (EFG1), which show expression changes in the different morphological cell types and nutrient conditions. In this protocol, we described in detail the major steps of this approach: growth and fixation, hybridization, imaging, cell segmentation, and mRNA spot analysis. Raw data is provided with the protocol to favor reproducibility. This approach could benefit the molecular characterization of C. albicans and other filamentous fungi, pathogenic or nonpathogenic.


Asunto(s)
Candida albicans , ARN , Humanos , Hibridación Fluorescente in Situ , Reproducibilidad de los Resultados , ARN Mensajero/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Hifa
2.
Transcription ; 14(3-5): 105-126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37050882

RESUMEN

Across all kingdoms of life, gene regulatory mechanisms underlie cellular adaptation to ever-changing environments. Regulation of gene expression adjusts protein synthesis and, in turn, cellular growth. Messenger RNAs are key molecules in the process of gene expression. Our ability to quantitatively measure mRNA expression in single cells has improved tremendously over the past decades. This revealed an unexpected coordination between the steps that control the life of an mRNA, from transcription to degradation. Here, we provide an overview of the state-of-the-art imaging approaches for measurement and quantitative understanding of gene expression, starting from the early visualizations of single genes by electron microscopy to current fluorescence-based approaches in single cells, including live-cell RNA-imaging approaches to FISH-based spatial transcriptomics across model organisms. We also highlight how these methods have shaped our current understanding of the spatiotemporal coupling between transcriptional and post-transcriptional events in prokaryotes. We conclude by discussing future challenges of this multidisciplinary field.Abbreviations: mRNA: messenger RNA; rRNA: ribosomal rDNA; tRNA: transfer RNA; sRNA: small RNA; FISH: fluorescence in situ hybridization; RNP: ribonucleoprotein; smFISH: single RNA molecule FISH; smiFISH: single molecule inexpensive FISH; HCR-FISH: Hybridization Chain-Reaction-FISH; RCA: Rolling Circle Amplification; seqFISH: Sequential FISH; MERFISH: Multiplexed error robust FISH; UTR: Untranslated region; RBP: RNA binding protein; FP: fluorescent protein; eGFP: enhanced GFP, MCP: MS2 coat protein; PCP: PP7 coat protein; MB: Molecular beacons; sgRNA: single guide RNA.


Asunto(s)
ARN Guía de Sistemas CRISPR-Cas , ARN , ARN/genética , Hibridación Fluorescente in Situ/métodos , ARN Mensajero/metabolismo , Biosíntesis de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA