Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 949: 175097, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39074756

RESUMEN

Degradation and fragmentation of mulching films represents an increasing source of microplastics (MPs, plastic particles 1 µm to 5 mm in size) to agricultural soils. MPs have been shown to affect many soil invertebrates, including springtails. However, these studies typically use test materials representing less environmentally relevant particle types, such as pristine uniform MPs, which do not represent the large range of particle sizes and morphologies found in the field. This study aimed at providing insight into the adverse effects of MPs originating from agricultural mulching films, by using artificially aged MPs derived from both biodegradable (starch-polybutadiene adipate terephthalate (PBAT)) blend, as well as conventional (linear low-density polyethylene (LLDPE)) plastic polymers. The soil dwelling springtail Folsomia candida was exposed to these MPs for five generations in order to elucidate population effects due to possible reproduction toxicity, endocrine disruption, mutagenesis or developmental toxicity. F. candida were exposed to 0, 0.0016, 0.008, 0.04, 0.2, 1, 2, 3, 4 and 5 % (w/w dry soil) MPs in Lufa 2.2 soil, which includes concentrations within the range of environmental relevance. Juveniles produced at each concentration were transferred to the next generation, with the parental, F2 and F4 generations being exposed for four weeks and F1 and F3 generations for five weeks. No concentration-dependent effects on F. candida survival or reproduction were observed in exposures to either of the MPs, in any of the generations. These results suggest that the particular MPs used in this study, derived from mulching films used on agricultural soils, may not be potent toxicants to F. candida, even after long-term exposure and at elevated concentrations.


Asunto(s)
Agricultura , Artrópodos , Microplásticos , Contaminantes del Suelo , Microplásticos/toxicidad , Animales , Contaminantes del Suelo/toxicidad , Artrópodos/efectos de los fármacos , Suelo/química , Plásticos/toxicidad
2.
Front Genet ; 13: 960958, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226192

RESUMEN

Massive defaunation and high extinction rates have become characteristic of the Anthropocene. Genetic effects of population decline can lead populations into an extinction vortex, where declining populations show lower genetic fitness, in turn leading to lower populations still. The lower genetic fitness in a declining population due to a shrinking gene pool is known as genetic erosion. Three different types of genetic erosion are highlighted in this review: overall homozygosity, genetic load and runs of homozygosity (ROH), which are indicative of inbreeding. The ability to quantify genetic erosion could be a very helpful tool for conservationists, as it can provide them with an objective, quantifiable measure to use in the assessment of species at risk of extinction. The link between conservation status and genetic erosion should become more apparent. Currently, no clear correlation can be observed between the current conservation status and genetic erosion. However, the high quantities of genetic erosion in wild populations, especially in those species dealing with habitat fragmentation and habitat decline, may be early signs of deteriorating populations. Whole genome sequencing data is the way forward to quantify genetic erosion. Extra screening steps for genetic load and hybridization can be included, since they could potentially have great impact on population fitness. This way, the information yielded from genetic sequence data can provide conservationists with an objective genetic method in the assessment of species at risk of extinction. However, the great complexity of genome erosion quantification asks for consensus and bridging science and its applications, which remains challenging.

3.
Environ Toxicol Chem ; 41(7): 1686-1695, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35611556

RESUMEN

Recently, the high toxicity of neonicotinoids to the survival and reproduction of adult earthworms has become apparent in standard 56-day toxicity tests. The persistence of some neonicotinoids and/or their repeated application may lead to long-term exposure, possibly also affecting other parts of the life cycle of earthworms. The present study aimed at providing insight into the sublethal effects of imidacloprid, thiacloprid, and clothianidin on juvenile Eisenia andrei exposed for 16 weeks in Lufa 2.2 soil. Significant effects on growth and maturation were observed for all compounds. Exposure to 0.125 mg imidacloprid/kg dry soil and 0.03125 and 0.0625 mg thiacloprid/kg dry soil significantly affected the growth of the earthworms, while significant maturation effects were observed at 0.03125 mg/kg dry soil for imidacloprid and thiacloprid and 0.25 mg clothianidin/kg dry soil. The 16-week no-observed-effect concentrations (NOECs) found in the present study were lower than previously reported NOECs for effects on earthworm reproduction. Predicted environmental concentrations after a single application exceeded the observed NOECs for effects on earthworm maturation in the case of imidacloprid and thiacloprid and for effects on earthworm growth in the case of thiacloprid and clothianidin. Environ Toxicol Chem 2022;41:1686-1695. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Insecticidas , Oligoquetos , Contaminantes del Suelo , Animales , Crecimiento y Desarrollo , Guanidinas , Insecticidas/química , Neonicotinoides/toxicidad , Nitrocompuestos , Suelo/química , Contaminantes del Suelo/química , Contaminantes del Suelo/toxicidad , Tiazinas , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA