Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Small ; : e2405243, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291889

RESUMEN

The ability to reversibly exhibit structural color patterns has positioned photonic crystals (PCs) at the forefront of anti-counterfeiting. However, the security offered by the mere reversible display is susceptible to illicit alteration and disclosure. Herein, inspired by the electronic message captcha, bilayer photonic crystal (BPC) systems with integrated decryption and verification modules, are realized by combining inverse opal (IO) and double inverse opal (DIO) with polyacrylate polymers. When the informationized BPC is immersed in ethanol or water, the DIO layer displayed encrypted information due to the solvent-induced ordered rearrangement of polystyrene (PS) microspheres. The verification step is established based on the different structural colors of the IO layer pattern, which result from the deformation or recovery of the macroporous skeleton induced by solvent evaporation. Moreover, through the evaporation-induced random self-assembly of PS@SiO2 and SiO2 microspheres, unclonable structurally colored identifying codes are created in the IO layer, ensuring the uniqueness upon the verification. The decrypted code in the DIO layer is valid only when the IO layer displays the pattern with the predetermined structural color; otherwise, it is a pseudo-code. This structural color-based "decryption-verification" approach offers innovative anti-counterfeiting applications in nanophotonics.

2.
Sci Total Environ ; 949: 175153, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089384

RESUMEN

The extensive production and widespread use of plastic products have resulted in the gradual escalation of plastic pollution. Micro/nano/plastic pollution has become a global issue, and addressing how to "green" remove them is a crucial topic that needs to be tackled at this stage. Recently, micro/nanorobots have offered a promising solution for improving water monitoring and remediation as an environmentally friendly remediation strategy. Micro/nanorobots have been proven to efficiently remove micro/nanoplastics from water bodies. Micro/nanoplastics are captured by micro/nanorobots in water through electrostatic adsorption and electrophoretic interactions, and separation is achieved under the action of an external transverse rotating magnetic field. Their small size enables them to navigate easily in complex environments, while magnetic and optical drives help them move along established routes and reach different areas. With the assistance of these innovative robots, diffusion-limited reactions can be overcome, allowing for active contact with target pollutants. However, research on the removal of micro/nanoplastics by micro/nanorobots is still in its early stages. The dependence on chemical fuels and high costs severely limit the development and application of micro/nanorobots. Micro/nanoplastics are frequently captured by micro/nanorobots, but the degradation efficiency of micro/nanoplastics remains very low. Additionally, the secondary pollution caused by micro/nanorobots is also a key factor limiting their implementation. Although micro/nanorobots are a very promising technology for removing micro/nanoplastics, they still need to be explored in their applications. This paper discusses the opportunities and challenges faced by micro/nanorobots in removing micro/nanoplastics. Development and application of self-driven intelligent micro/nanorobots will help expedite the eco-friendly removal of micro/nanoplastics and other emerging pollutants.

3.
Drug Resist Updat ; 77: 101136, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39154499

RESUMEN

AIMS: As our comprehension of the intricate relationship between cellular senescence and tumor biology continues to evolve, the therapeutic potential of cellular senescence is gaining increasing recognition. Here, we identify chromobox 4 (CBX4), a Small Ubiquitin-related Modifier (SUMO) E3 ligase, as an antagonist of cellular senescence and elucidate a novel mechanism by which CBX4 promotes drug resistance and malignant progression of gastric cancer (GC). METHODS: In vitro and in vivo models were conducted to investigate the manifestation and impact of CBX4 on cellular senescence and chemoresistance. High-throughput sequencing, chromatin immunoprecipitation, and co-immunoprecipitation techniques were utilized to identify the upstream regulators and downstream effectors associated with CBX4, revealing its intricate regulatory network. RESULTS: CBX4 diminishes the sensitivity of GC cells to cellular senescence, facilitating chemoresistance and GC development by deactivating the senescence-related Hippo pathway. Mechanistically, low-dose cisplatin transcriptionally downregulates CBX4 through CEBPB. In addition, CBX4 preserves the stability and cytoplasm-nuclear transport of YAP1, the key player of Hippo pathway, by inducing SUMO1 modification at K97 and K280, which competitively inhibits YAP1-S127 phosphorylation. CONCLUSIONS: Our study highlights the anti-senescence role of CBX4 and suggests that CBX4 inhibition in combination with low-dose cisplatin has the potential to overcome chemoresistance and effectively restrict GC progression.

4.
Int J Radiat Biol ; : 1-9, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136543

RESUMEN

PURPOSE: Head and neck squamous cell carcinoma (HNSCC) is globally prevalent with high recurrence, low survival rate, and poor quality of life for patients. Derived from PAC-1, SM-1 can activate procaspase-3 and induce apoptosis in cancer cells to exert anti-tumor effects. However, the inhibitory effect of SM-1 on HNSCC after combination with radiation are unclear. This study aims to investigate the radiosensitizing effect of SM-1 on HNSCC in vitro and in vivo. METHODS: MTT method was used to detect the effect of SM-1 on the viability of HNSCC cell lines (HONE1, HSC-2, and CAL27). The effects of SM-1 combined with radiation on the survival index of HONE1, HSC-2, and CAL27 cell lines were determined by colony formation assay. Flow cytometry was used to investigate the effects of SM-1 and radiation combination on cell apoptosis and cell cycle, and western blot experiments were performed to detect the expression of apoptosis and cell cycle-related proteins. Finally, a xenograft tumor model of CAL27 was established to evaluate the anti-tumor effect of SM-1 combined with radiation in vivo. RESULTS: In vitro, SM-1 effectively inhibited the activity of HNSCC cell lines HONE1, HSC-2, and CAL27 cells, and synergistically showed anti-proliferation activity during combined irradiation. Meanwhile, anti-tumor effect of SM-1 on HNSCC was higher than that of Debio1143, and the radiosensitivity of cells was greatly increased. Flow cytometry and western blot analysis showed that SM-1 induced G2/M phase arrest of head and neck squamous cell carcinoma cells via inhibiting the expression of CyclinB1 and CDC2. Moreover, SM-1 activated caspase-3 activity and up-regulated the cleaved form of PARP1 to induce cell apoptosis. In vivo, SM-1 combined irradiation showed a good anti-tumor effect. CONCLUSION: SM-1 enhances HNSCC cell radiation sensitivity in vitro and in vivo, supporting its potential as a radiosensitizer for clinical trials in combination with radiotherapy.

5.
Rev Cardiovasc Med ; 25(6): 191, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39076314

RESUMEN

Researchers have investigated ways to develop optimal imaging techniques to increase the safety and effectiveness of electrophysiological (EP) procedures. Intracardiac echocardiography (ICE) is an advanced imaging tool that can directly visualize cardiac anatomical structures in high resolution, assess tissue heterogeneity and arrhythmogenic substrates, locate intracardiac catheters, monitor catheter-tissue contact and ablation injury in real-time, excluding intracardiac thrombi, and quickly detect procedural complications. Additionally, real-time imaging via ICE can be integrated with a three-dimensional (3D) electroanatomical mapping (EAM) system to reconstruct cardiac anatomy. This technique also promotes the development of zero-radiation EP procedures. Many EP studies and procedures have implemented ICE because it has several advantages over fluoroscopy and transesophageal echocardiography (TEE). ICE-guided EP procedures can be performed under conscious sedation; esophageal intubation and additional anesthesiologists are not required. Atrial fibrillation (AF) and supraventricular tachycardias (SVT) are the most common tachyarrhythmias in clinical settings. A comprehensive understanding of critical anatomical structures, such as the atrial septum, fossa ovalis (FO), and great heart vessels, is needed for the successful catheter ablation of these arrhythmias.

6.
J Hazard Mater ; 474: 134776, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38852255

RESUMEN

Phthalate esters (PAEs) are widely used as plasticizers and cause serious complex pollution problem in environment. Thus, strains with efficient ability to simultaneously degrade various PAEs are required. In this study, a newly isolated strain Rhodococcus sp. AH-ZY2 can degrade 500 mg/L Di-n-octyl phthalate completely within 16 h and other 500 mg/L PAEs almost completely within 48 h at 37 °C, 180 rpm, and 2 % (v/v) inoculum size of cultures with a OD600 of 0.8. OD600 = 0.8, 2 % (v/v). Twenty genes in its genome were annotated as potential esterase and four of them (3963, 4547, 5294 and 5359) were heterogeneously expressed and characterized. Esterase 3963 and 4547 is a type I PAEs esterase that hydrolyzes PAEs to phthalate monoesters. Esterase 5294 is a type II PAEs esterase that hydrolyzes phthalate monoesters to phthalate acid (PA). Esterase 5359 is a type III PAEs esterase that simultaneously degrades various PAEs to PA. Molecular docking results of 5359 suggested that the size and indiscriminate binding feature of spacious substrate binding pocket may contribute to its substrate versatility. AH-ZY2 is a potential strain for efficient remediation of PAEs complex pollution in environment. It is first to report an esterase that can efficiently degrade mixed various PAEs.


Asunto(s)
Biodegradación Ambiental , Esterasas , Ésteres , Simulación del Acoplamiento Molecular , Ácidos Ftálicos , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/genética , Rhodococcus/enzimología , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Esterasas/metabolismo , Esterasas/genética , Ésteres/metabolismo , Ésteres/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Plastificantes/metabolismo
7.
Dalton Trans ; 53(16): 6993-6999, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38563111

RESUMEN

The separation of acetylene from carbon dioxide is challenging due to their almost identical molecular sizes and volatilities. Metal-organic frameworks (MOFs) in general are strong candidates for the separation of gas mixtures owing to the presence of functional pore surfaces that can selectively capture specific target molecules. Herein, we report a stable and easily synthesized bismuth-based MOF, Bi-BTC, which can achieve the separation of acetylene and carbon dioxide. We performed a detailed analysis of the sorption properties of the Bi-MOF. Bi-BTC shows good adsorption capacities for C2H2 with a capacity of 53.8 cm3 g-1 at 298 K and 1.0 bar, and C2H2/CO2 selectivity of 5.14/7.69 at 298 K and 1.0/0.1 bar. IAST selectivity calculations indicate that Bi-BTC possesses good separation capacity, and dynamic breakthrough experiments were performed to prove the separation of C2H2 and CO2. Bi-MOFs as a group of relatively less studied types of MOFs have interesting adsorption characteristics, and this study on Bi-based MOF will enrich three-dimensional Bi-MOF adsorbents for gas adsorption and separation applications.

8.
J Asian Nat Prod Res ; 26(1): 120-129, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38509697

RESUMEN

Three new monoterpene phenol dimers, bisbakuchiols V-X (1-3), and two bakuchiol ethers (4 and 5), along with four known compounds (6-9) were isolated from the fruits of Psoralea corylifolia. Their structures were elucidated based on extensive spectral analysis. The absolute configurations of 1, 2, 4, and 5 were specified by quantum chemical calculations of ECD spectra.


Asunto(s)
Fenol , Psoralea , Fenol/análisis , Frutas/química , Psoralea/química , Monoterpenos , Estructura Molecular , Fenoles/química
9.
Thromb J ; 22(1): 23, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429631

RESUMEN

BACKGROUND AND OBJECTIVE: Left ventricular thrombus (LVT) formation in patients with acute myocardial infarction (AMI) or cardiomyopathies is not uncommon. The optimal oral anticoagulation therapy for resolving LVT has been under intense debate. Vitamin K antagonists (VKAs) remain the anticoagulant of choice for this condition, according to practice guidelines. Evidence supporting the use of direct oral anticoagulants (DOACs) in the management of LVT continues to grow. We performed a systematic review and meta-analysis to compare the efficacy and safety of DOACs versus VKAs. METHODS: A comprehensive literature search was carried out in PubMed, Cochrane Library, Web of Science, Embase, and Scopus databases in July 2023. The efficacy outcomes of this study were thrombus resolution, ischemic stroke, systemic embolism, stroke/systemic embolism, all-cause mortality, and adverse cardiovascular events. The safety outcomes were any bleeding, major bleeding, and intracranial hemorrhage. A total of twenty-seven eligible studies were included in the meta-analysis. Data were analyzed utilizing Stata software version 15.1. RESULTS: There was no significant difference between DOACs and VKAs with regard to LVT resolution (RR = 1.00, 95% CI 0.95-1.05, P = 0.99). In the overall analysis, DOACs significantly reduced the risk of stroke (RR = 0.74, 95% CI 0.57-0.96, P = 0.021), all-cause mortality (RR = 0.70, 95% CI 0.57-0.86, P = 0.001), any bleeding (RR = 0.75, 95% CI 0.61-0.92, P = 0.006) and major bleeding (RR = 0.67, 95% CI 0.52-0.85, P = 0.001) when compared to VKAs. Meanwhile, in the sub-analysis examining randomized controlled trials (RCTs), the aforementioned outcomes no longer differed significantly between the DOACs and VKAs groups. The incidences of systemic embolism (RR = 0.81, 95% CI 0.54-1.22, P = 0.32), stroke/systemic embolism (RR = 0.85, 95% CI 0.72-1.00, P = 0.056), intracranial hemorrhage (RR = 0.59, 95% CI 0.23-1.54, P = 0.28), and adverse cardiovascular events (RR = 0.99, 95% CI 0.63-1.56, P = 0.92) were comparable between the DOACs and VKAs groups. A subgroup analysis showed that patients treated with rivaroxaban had a significantly lower risk of stroke (RR = 0.24, 95% CI 0.08-0.72, P = 0.011) than those in the VKAs group. CONCLUSION: With non-inferior efficacy and superior safety, DOACs are promising therapeutic alternatives to VKAs in the treatment of LVT. Further robust investigations are warranted to confirm our findings.

10.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 644-664, 2024 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-38545969

RESUMEN

The acid signal transduction system can sense the acidic environment and translate it into signals to regulate various acid tolerance mechanisms within bacteria, helping them to cope with the stress of the acidic environment and survive the acidic environments. This review describes several major acid signal transduction systems that play important roles in acid-tolerant bacteria: EvgS/EvgA, PhoQ/PhoP, ArsS/ArsR, and CadC. The structural components of these systems and their regulation of acid-tolerant systems were used to analyze how acid-tolerant bacteria transduce signal in an acid environment to activate the corresponding acid-tolerance mechanisms and cope with the acid stress. An in-depth understanding of the regulatory mechanisms of acid-tolerant systems can help the mining, optimal design and construction of multiple acid-tolerant parts to improve the growth and metabolism of target strains in acidic environments. It helps to better utilize engineered microorganisms with super acid-resistance for industrial production of valuable metabolites, bioremediation of pollution in acidic environments. Moreover, it also helps to provide novel targets for inhibiting the growth of acid-tolerant pathogenic bacteria.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Bacterias/metabolismo , Transducción de Señal/fisiología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica
11.
Appl Microbiol Biotechnol ; 108(1): 276, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536521

RESUMEN

The massive usage of phthalate esters (PAEs) has caused serious pollution. Bacterial degradation is a potential strategy to remove PAE contamination. So far, an increasing number of PAE-degrading strains have been isolated, and the catabolism of PAEs has been extensively studied and reviewed. However, the investigation into the bacterial PAE uptake process has received limited attention and remains preliminary. PAEs can interact spontaneously with compounds like peptidoglycan, lipopolysaccharides, and lipids on the bacterial cell envelope to migrate inside. However, this process compromises the structural integrity of the cells and causes disruptions. Thus, membrane protein-facilitated transport seems to be the main assimilation strategy in bacteria. So far, only an ATP-binding-cassette transporter PatDABC was proven to transport PAEs across the cytomembrane in a Gram-positive bacterium Rhodococcus jostii RHA1. Other cytomembrane proteins like major facilitator superfamily (MFS) proteins and outer membrane proteins in cell walls like FadL family channels, TonB-dependent transporters, and OmpW family proteins were only reported to facilitate the transport of PAEs analogs such as monoaromatic and polyaromatic hydrocarbons. The functions of these proteins in the intracellular transport of PAEs in bacteria await characterization and it is a promising avenue for future research on enhancing bacterial degradation of PAEs. KEY POINTS: • Membrane proteins on the bacterial cell envelope may be PAE transporters. • Most potential transporters need experimental validation.


Asunto(s)
Ácidos Ftálicos , Ácidos Ftálicos/metabolismo , Proteínas de Transporte de Membrana , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacterias/metabolismo , Ésteres , Dibutil Ftalato/química , China
12.
Environ Res ; 247: 118357, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325782

RESUMEN

The widespread occurrence of organic antibiotic pollution in the environment and the associated harmful effects necessitate effective treatment method. Heterogeneous electro-Fenton (hetero-EF) has been regarded as one of the most promising techniques towards organic pollutant removal. However, the preparation of efficient cathode still remains challenging. Herein, a novel metal-organic framework (MOF)-derived Fe/Ni@C marigold-like nanosheets were fabricated successfully for the degradation of oxytetracycline (OTC) by serving as the hetero-EF cathode. The FeNi3@C (Fe/Ni molar ratio of 1:3) based hetero-EF system exhibited 8.2 times faster OTC removal rate than that of anodic oxidation and possessed many advantages such as excellent OTC degradation efficiency (95.4% within 90 min), broad environmental adaptability (satisfactory treatment performance for multiple antibiotics under various actual water matrixes), good stability and reusability, and significant toxicity reduction. The superior hetero-EF catalytic performance was mainly attributed to: 1) porous carbon and Ni existence were both conducive to the in-situ generation of H2O2 from dissolved O2; 2) the synergistic effects of bimetals together with electron transfer from the cathode promoted the regeneration of ≡ FeII/NiII, thereby accelerating the production of reactive oxygen species; 3) the unique nanosheet structure derived from the precursor two-dimensional Fe-Ni MOFs enhanced the accessibility of active sites. This work presented a promising hetero-EF cathode for the electrocatalytic treatment of antibiotic-containing wastewaters.


Asunto(s)
Estructuras Metalorgánicas , Oxitetraciclina , Contaminantes Químicos del Agua , Antibacterianos , Peróxido de Hidrógeno/química , Oxidación-Reducción , Electrodos , Contaminantes Químicos del Agua/análisis
13.
Clin Genet ; 106(1): 27-36, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342987

RESUMEN

Oligoasthenoteratozoospermia (OAT) is a common type of male infertility; however, its genetic causes remain largely unknown. Some of the genetic determinants of OAT are gene defects affecting spermatogenesis. BCORL1 (BCL6 corepressor like 1) is a transcriptional corepressor that exhibits the OAT phenotype in a knockout mouse model. A hemizygous missense variant of BCORL1 (c.2615T > G:p.Val872Gly) was reported in an infertile male patient with non-obstructive azoospermia (NOA). Nevertheless, the correlation between BCORL1 variants and OAT in humans remains unknown. In this study, we used whole-exome sequencing to identify a novel hemizygous nonsense variant of BCORL1 (c.1564G > T:p.Glu522*) in a male patient with OAT from a Han Chinese family. Functional analysis showed that the variant produced a truncated protein with altered cellular localization and a dysfunctional interaction with SKP1 (S-phase kinase-associated protein 1). Further population screening identified four BCORL1 missense variants in subjects with both OAT (1 of 325, 0.31%) and NOA (4 of 355, 1.13%), but no pathogenic BCORL1 variants among 362 fertile subjects. In conclusion, our findings indicate that BCORL1 is a potential candidate gene in the pathogenesis of OAT and NOA, expanded its disease spectrum and suggested that BCORL1 may play a role in spermatogenesis by interacting with SKP1.


Asunto(s)
Secuenciación del Exoma , Infertilidad Masculina , Proteínas Represoras , Masculino , Humanos , Proteínas Represoras/genética , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Oligospermia/genética , Oligospermia/patología , Adulto , Linaje , Azoospermia/genética , Azoospermia/patología , Mutación con Pérdida de Función/genética , Predisposición Genética a la Enfermedad , Proteína-Arginina N-Metiltransferasas/genética , Mutación Missense/genética , Espermatogénesis/genética
14.
Front Bioeng Biotechnol ; 12: 1350024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38282893

RESUMEN

Objective: A model of chronic infectious mandibular defect (IMD) caused by mixed infection with Staphylococcus aureus and Pseudomonas aeruginosa was established to explore the occurrence and development of IMD and identify key genes by transcriptome sequencing and bioinformatics analysis. Methods: S. aureus and P. aeruginosa were diluted to 3 × 108 CFU/mL, and 6 × 3 × 3 mm defects lateral to the Mandibular Symphysis were induced in 28 New Zealand rabbits. Sodium Morrhuate (0.5%) and 50 µL bacterial solution were injected in turn. The modeling was completed after the bone wax closed; the effects were evaluated through postoperative observations, imaging and histological analyses. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein‒protein interaction (PPI) network analyses were performed to investigate the function of the differentially expressed genes (DEGs). Results: All rabbits showed characteristics of infection. The bacterial cultures were positive, and polymerase chain reaction (PCR) was used to identify S. aureus and P. aeruginosa. Cone beam CT and histological analyses showed inflammatory cell infiltration, pus formation in the medullary cavity, increased osteoclast activity in the defect area, and blurring at the edge of the bone defect. Bioinformatics analysis showed 1,804 DEGs, 743 were upregulated and 1,061 were downregulated. GO and KEGG analyses showed that the DEGs were enriched in immunity and osteogenesis inhibition, and the core genes identified by the PPI network were enriched in the Hedgehog pathway, which plays a role in inflammation and tissue repair; the MEF2 transcription factor family was predicted by IRegulon. Conclusion: By direct injection of bacterial solution into the rabbit mandible defect area, the rabbit chronic IMD model was successfully established. Based on the bioinformatics analysis, we speculate that the Hedgehog pathway and the MEF2 transcription factor family may be potential intervention targets for repairing IMD.

15.
Dalton Trans ; 53(4): 1698-1705, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38169009

RESUMEN

Preparation of the high value-added chemical 2,5-dimethylfuran (2,5-DMF) from the biomass-derived platform molecule 5-hydroxymethylfurfural (HMF) is of great significance in the preparation of biofuels. Here, a bottom-up strategy was used to prepare a metal-organic framework (MOF) material with a two-dimensional nanosheet morphology, named CPM, in which an additive 2-methylimidazole was introduced into the hydrothermal process of Cu2+ ions and terephthalic acid. Subsequently, CPM-700 prepared by heat treatment under an inert atmosphere showed excellent catalytic performance in the reaction of HMF hydrodeoxygenation to 2,5-DMF. The materials before and after pyrogenation were characterized by PXRD, XPS, TEM, N2 adsorption and desorption and so on. It was confirmed that compared with the catalyst derived from the cubic MOF material self-assembled by Cu2+ and terephthalic acid, the morphology of 2D nanosheets was beneficial for the reaction of HMF to 2,5-DMF. Combined with the experimental data, the possible reaction path of 2,5-DMF preparation from HMF is that 2,5-dihydroxymethylfuran was formed by hydrogenation of the aldehyde group on the furan ring, and then 2,5-DMF was obtained by hydrogenolysis. This paper provides an effective route for 2D MOF-derived catalytic materials in the selective hydrogenation of HMF.

17.
Food Funct ; 15(1): 295-309, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38084034

RESUMEN

Intestinal mucosal barrier damage is closely associated with the development of several intestinal inflammatory diseases. Isoquercitrin (IQ) is a natural flavonoid compound derived from plants, which exhibits high antioxidant and anti-inflammatory activity with minimal side effects in humans. Therefore, it shows great potential for preventing and treating intestinal mucosal barrier damage. This study aims to investigate the ameliorative effect and mechanism of IQ on lipopolysaccharide (LPS)-induced intestinal mucosal barrier damage in mice. The mice were treated with IQ for 7 days and then injected with LPS to induce intestinal mucosal barrier damage. The results revealed that IQ treatment alleviated LPS-induced intestinal mucosal barrier damage in mice, which can be evidenced by the improvements in intestinal morphology and the promotion of expression in intestinal tight junctions (ZO-1, Claudin-1, and Occludin), as well as MUC2 mucin. IQ also attenuated intestinal inflammatory responses by inhibiting the TLR4/MyD88/NF-κB signaling pathway and reducing the expression and plasma levels of IL-6, IL-1ß, and TNF-α. Furthermore, IQ significantly increased the relative abundance of beneficial bacteria, including Dubosiella, Akkermansia muciniphila and Faecalibaculum rodentium, while suppressing the growth of harmful bacteria such as Mucispirillum schaedleri in the intestinal flora of mice. Consequently, IQ can alleviate the LPS-induced intestinal mucosal barrier damage in mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway and modulating the intestinal flora.


Asunto(s)
Microbioma Gastrointestinal , FN-kappa B , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Lipopolisacáridos/efectos adversos , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Transducción de Señal
18.
Clin Pharmacol ; 15: 113-123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090388

RESUMEN

Background: Dronedarone is an effective drug for maintaining the sinus rhythm in patients with atrial fibrillation (AF). The efficacy and safety of dronedarone versus amiodarone in patients with AF after catheter ablation (CA) needs more evidence. We retrospectively compared the efficacy and safety of dronedarone and amiodarone in our hospital. Methods: Patients who underwent CA from January 2021 to January 2022 and used dronedarone (n=229) or amiodarone (n=202) during the blind period were enrolled. The recurrence of AF in post-and during the blanking period was compared between the groups; the rehospitalization for re-ablation and adverse drug events (ADE) were also calculated. Results: During an average follow-up period of 14.28 months, the long-term recurrence rate of AF did not differ significantly between the amiodarone group and dronedarone group (22.71% vs 21.29%, hazard ratio [HR], 1.033, 95% confidence interval [CI], 0.661-1.614; p=0.888). The recurrence rate in the blanking period also showed no statistically significant differences between the amiodarone group and dronedarone group (9.90% vs 14.41%, HR, 0.851; 95% CI, 0.463-1.564; p=0.604). The re-hospitalization rates for re-ablation between two groups did not differ between the amiodarone group and dronedarone group (4.65% vs 13.46%; p =0.144). The incidence of ADE was higher in the dronedarone groups than that in the amiodarone group (16.59% vs 5.45%, p <0.001). The main adverse drug events in the dronedarone and amiodarone groups were gastrointestinal (6.99%) and bradycardia (2.48%), respectively. Conclusion: Compared to the amiodarone group, the dronedarone group had a similar blank-period and long-term recurrence rate of AF and a higher incidence of ADE.

19.
Sensors (Basel) ; 23(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37960489

RESUMEN

Evaporation ducts are abnormal states of the atmosphere in the air-sea boundary layer that directly affect the propagation trajectory of electromagnetic (EM) waves. Therefore, an accurate diagnosis of the evaporation duct height (EDH) is important for studying the propagation trajectory of EM waves in evaporation ducts. Most evaporation duct models (EDMs) based on the Monin-Obukhov similarity theory are empirical methods. Different EDMs have different levels of environmental adaptability. Evaporation duct diagnosis methods based on machine learning methods only consider the mathematical relationship between data and do not explore the physical mechanism of evaporation ducts. To solve the above problems, this study observed the meteorological and hydrological parameters of the five layers of the low-altitude atmosphere in the East China Sea on board the research vessel Xiangyanghong 18 in April 2021 and obtained the atmospheric refractivity profile. An evaporation duct multimodel fusion diagnosis method (MMF) based on a library for support vector machines (LIBSVM) is proposed. First, based on the observed meteorological and hydrological data, the differences between the EDH diagnosis results of different EDMs and MMF were analyzed. When ASTD ≥ 0, the average errors of the diagnostic results of BYC, NPS, NWA, NRL, LKB, and MMF are 2.57 m, 2.92 m, 2.67 m, 3.27 m, 2.57 m, and 0.24 m, respectively. When ASTD < 0, the average errors are 2.95 m, 2.94 m, 2.98 m, 2.99 m, 2.97 m, and 0.41 m, respectively. Then, the EM wave path loss accuracy analysis was performed on the EDH diagnosis results of the NPS model and the MMF. When ASTD ≥ 0, the average path loss errors of the NPS model and MMF are 5.44 dB and 2.74 dB, respectively. When ASTD < 0, the average errors are 5.21 dB and 3.46 dB, respectively. The results show that the MMF is suitable for EDH diagnosis, and the diagnosis accuracy is higher than other models.

20.
Water Res ; 247: 120810, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37918202

RESUMEN

CO2 as a byproduct of organic waste/wastewater fermentation has an important impact on the carboxylate chain elongation. In this study, a semi-continuous flow reactor was used to investigate the effects of CO2 loading rates (Low = 0.5 LCO2·L-1·d-1, Medium = 1.0 LCO2·L-1·d-1, High = 2.0 LCO2·L-1·d-1) on chain elongation system Ethanol and acetate were utilized as the electron donor and electron acceptor, respectively. The results demonstrate that low loading rate of CO2 has a positive effect on chain elongation. The maximum production of caproate and CH4 were observed at a low CO2 loading rate. Caproate production reached 1.88 g COD·L-1·d-1 with a selectivity of 62.55 %, while CH4 production reached 129.7 ml/d, representing 47.4 % of the total. Metagenomic analysis showed that low loading rate of CO2 favored the enrichment of Clostridium kluyveri, with its abundance being 3.8 times higher than at of high CO2 loading rate. Metatranscriptomic analysis revealed that high CO2 loading rate induced oxidative stress in microorganisms, as evidenced by increased expression of heat shock proteins and superoxide dismutase genes. Further investigation suggested that genes associated with the reverse ß-oxidation pathway, CO2 uptake pathway and hydrogenotrophic methanogenesis pathway were reduced at high CO2 loading rate. These findings provide insight into the underlying mechanisms of how CO2 affects chain elongation, and it could be a crucial reason for the poor performance of chain elongation systems with high endogenous CO2 production.


Asunto(s)
Caproatos , Dióxido de Carbono , Caproatos/metabolismo , Etanol/metabolismo , Fermentación , Reactores Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA