RESUMEN
The present study aimed at evaluating the YF-specific neutralizing antibody profile besides a multiparametric analysis of phenotypic/functional features of cell-mediated response elicited by the 1/5 fractional dose of 17DD-YF vaccine, administered as a single subcutaneous injection. The immunological parameters of each volunteer was monitored at two time points, referred as: before (Day 0) [Non-Vaccinated, NV(D0)] and after vaccination (Day 30-45) [Primary Vaccinees, PV(D30-45)]. Data demonstrated high levels of neutralizing antibodies for PV(D30-45) leading to a seropositivity rate of 93%. A broad increase of systemic soluble mediators with a mixed profile was also observed for PV(D30-45), with IFN-γ and TNF-α presenting the highest baseline fold changes. Integrative network mapping of soluble mediators showed increased correlation numbers in PV(D30-45) as compared to NV(D0) (532vs398). Moreover, PV(D30-45) exhibited increased levels of Terminal Effector (CD45RA+CCR7-) CD4+ and CD8+ T-cells and Non-Classical memory B-cells (IgD+CD27+). Dimensionality reduction of Mass Cytometry data further support these findings. A polyfunctional cytokine profile (TNF-α/IFN-γ/IL-10/IL-17/IL-2) of T and B-cells was observed upon in vitro antigen recall. Mapping and kinetics timeline of soluble mediator signatures for PV(D30-45) further confirmed the polyfunctional profile upon long-term in vitro culture, mediated by increased levels of IFN-γ and TNF-α along with decreased production of IL-10. These findings suggest novel insights of correlates of protection elicited by the 1/5 fractional dose of 17DD-YF vaccine.
Asunto(s)
Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Humanos , Adulto , Anticuerpos Neutralizantes , Interleucina-10 , Anticuerpos Antivirales , Factor de Necrosis Tumoral alfa , Linfocitos T CD8-positivos , VacunaciónRESUMEN
This study described a soluble mediator storm in acute Yellow Fever/YF infection along the kinetics timeline towards convalescent disease. The analyses of the YF Viral RNAnemia, chemokines, cytokines, and growth factors were performed in YF patients at acute/(D1-15) and convalescent/(D16-315) phases. Patients with acute YF infection displayed a trimodal viremia profile spreading along D3, D6, and D8-14. A massive storm of mediators was observed in acute YF. Higher levels of mediators were observed in YF with higher morbidity scores, patients under intensive care, and those progressing to death than in YF patients who progress to late-relapsing hepatitis/L-Hep. A unimodal peak of biomarkers around D4-6 with a progressive decrease towards D181-315 was observed in non-L-Hep patients, while a bimodal pattern with a second peak around D61-90 was associated with L-Hep. This study provided a comprehensive landscape of evidence that distinct immune responses drive pathogenesis, disease progression, and L-Hep in YF patients.
Asunto(s)
Hepatitis , Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Humanos , Fiebre Amarilla/patología , Pronóstico , Citocinas , BiomarcadoresRESUMEN
Chagas disease is a neglected tropical disease in Latin America and an imported emerging disease worldwide. Chronic Chagas disease cardiomyopathy (CCC) is the most prominent clinical form and can lead to heart failure, thromboembolism, and sudden death. While previous reports have supported a role for CD4+ T lymphocytes in the pathogenesis of CCC a comprehensive analysis of these cells during different clinical forms is lacking. Here, we used high-dimensional flow cytometry to assess the diversity of circulating CD4+ T cells in patients with distinct clinical forms. We found increased frequencies of CD4+CD69+ T cells in patients compared to controls. CD39+ regulatory T cells, represented by mesocluster 6 were reduced in mild CCC patients compared to controls. Cytotoxic CD4+ T cells co-expressing granzyme B and perforin were expanded in patients with Chagas disease and were higher in patients with mild CCC compared to controls. Furthermore, patients with mild CCC displayed higher frequencies of multifunctional effector memory CD4+ T cells. Our results demonstrate an expansion in activated CD4+ T cells and a decrease in a functional subset of regulatory T cells associated with the onset of Chagas cardiomyopathy, suggesting their role in the establishment of cardiac lesions and as potential biomarkers for disease aggravation.
Asunto(s)
Cardiomiopatías , Enfermedad de Chagas , Insuficiencia Cardíaca , Humanos , Recuento de Linfocitos , Linfocitos T Reguladores , Enfermedad de Chagas/complicacionesRESUMEN
The 1990s saw the rapid reemergence of malaria in Amazonia, where it remains an important public health priority in South America. The Amazonian International Center of Excellence in Malaria Research (ICEMR) was designed to take a multidisciplinary approach toward identifying novel malaria control and elimination strategies. Based on geographically and epidemiologically distinct sites in the Northeastern Peruvian and Western Brazilian Amazon regions, synergistic projects integrate malaria epidemiology, vector biology, and immunology. The Amazonian ICEMR's overarching goal is to understand how human behavior and other sociodemographic features of human reservoirs of transmission-predominantly asymptomatically parasitemic people-interact with the major Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, and with human immune responses to maintain malaria resilience and continued endemicity in a hypoendemic setting. Here, we will review Amazonian ICEMR's achievements on the synergies among malaria epidemiology, Plasmodium-vector interactions, and immune response, and how those provide a roadmap for further research, and, most importantly, point toward how to achieve malaria control and elimination in the Americas.
Asunto(s)
Anopheles , Malaria , Animales , Anopheles/fisiología , Biología , Brasil/epidemiología , Humanos , Malaria/epidemiología , Malaria/prevención & control , Mosquitos Vectores/fisiología , Perú/epidemiologíaRESUMEN
In 2015, an outbreak of presumed waterborne toxoplasmosis occurred in Gouveia, Brazil. We conducted a 3-year prospective study on a cohort of 52 patients from this outbreak, collected clinical and multimodal imaging findings, and determined risk factors for ocular involvement. At baseline examination, 12 (23%) patients had retinochoroiditis; 4 patients had bilateral and 2 had macular lesions. Multimodal imaging revealed 2 distinct retinochoroiditis patterns: necrotizing focal retinochoroiditis and punctate retinochoroiditis. Older age, worse visual acuity, self-reported recent reduction of visual acuity, and presence of floaters were associated with retinochoroiditis. Among patients, persons >40 years of age had 5 times the risk for ocular involvement. Five patients had recurrences during follow-up, a rate of 22% per person-year. Recurrences were associated with binocular involvement. Two patients had late ocular involvement that occurred >34 months after initial diagnosis. Patients with acquired toxoplasmosis should have long-term ophthalmic follow-up, regardless of initial ocular involvement.
Asunto(s)
Coriorretinitis/diagnóstico por imagen , Brotes de Enfermedades , Imagen Multimodal/métodos , Toxoplasmosis Ocular/diagnóstico por imagen , Anciano , Brasil/epidemiología , Coriorretinitis/epidemiología , Humanos , Estudios Prospectivos , Factores de Riesgo , Toxoplasmosis Ocular/epidemiologíaRESUMEN
In the present study we have evaluated the performance of several immunological biomarkers for early diagnosis and prognosis of congenital toxoplasmosis. Our results showed that ex vivo serum levels of CXCL9, and the frequencies of circulating CD4+CD25+ T-cells and T. gondii-specific IFN-γ+CD4+ T-cells measured 30-45 days after birth presented high accuracy to distinguish T. gondii-infected infants from healthy age-matched controls (Global Accuracy/AUC = 0.9; 0.9 and 0.8, respectively). Of note was the enhanced performance (Accuracy = 96%) achieved by using a combined stepwise analysis of CD4+CD25+ T-cells and CXCL9. In addition, high global accuracy (AUC = 0.9) with elevated sensitivity (Se = 98%) was also reached by using the total frequency of in vitro IFN-γ-producing T. gondii-specific T-cells (∑ IFN-γ+ CD4+ & CD8+) as a biomarker of congenital toxoplasmosis. Furthermore, the analysis of in vitro T. gondii-specific IL5+CD4+ T-cells and IFN-γ+NK-cells displayed a high accuracy for early prognosis of ocular lesion in infant with congenital toxoplasmosis (Global Accuracy/AUC = 0.8 and 0.9, respectively). Together, these findings support the relevance of employing the elements of the cell-mediated immune response as biomarkers with potential to endorse early diagnosis and prognosis of congenital ocular toxoplasmosis to contribute for a precise clinical management and effective therapeutic intervention.
Asunto(s)
Quimiocina CXCL9/sangre , Tamizaje Neonatal/métodos , Toxoplasmosis Ocular/congénito , Toxoplasmosis Ocular/diagnóstico , Biomarcadores/sangre , Brasil , Citocinas/sangre , Diagnóstico Precoz , Femenino , Humanos , Recién Nacido , Masculino , Pronóstico , Estudios Prospectivos , Toxoplasmosis Ocular/sangreRESUMEN
Herpes simplex virus 1 (HSV-1) is a neurotropic DNA virus that is responsible for several clinical manifestations in humans, including encephalitis. HSV-1 triggers toll-like receptors (TLRs), which elicit cytokine production. Viral multiplication and cytokine expression in C57BL/6 wild-type (WT) mice infected with HSV-1 were evaluated. Virus was found in the trigeminal ganglia (TG), but not in the brains of animals without signs of encephalitis, between 2 and 6 days postinfection (d.p.i.). Cytokine expression in the TG peaked at 5 d.p.i. TLR9-/- and TLR2/9-/- mice were more susceptible to the virus, with 60% and 100% mortality, respectively, as opposed to 10% in the WT and TLR2-/- mice. Increased levels of both CXCL10/IP-10 and CCL2/MCP-1, as well as reduced levels of interferon-γ and interleukin 1-ß transcripts, measured in both the TG and brains at 5 d.p.i., and the presence of virus in the brain were correlated with total mortality in TLR2/9-/- mice. Cytokine alterations in TLR2/9-/- mice coincided with histopathological changes in their brains, which did not occur in WT and TLR2-/- mice and occurred only slightly in TLR9-/- mouse brain. Increased cellularity, macrophages, CD8 T cells producing interferon-γ, and expression levels of TLR2 and TLR9 were detected in the TG of WT-infected mice. We hypothesize that HSV-1 infection is controlled by TLR-dependent immune responses in the TG, which prevent HSV-1 encephalitis.