Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(6): e2308895121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285950

RESUMEN

Computational models of evolution are valuable for understanding the dynamics of sequence variation, to infer phylogenetic relationships or potential evolutionary pathways and for biomedical and industrial applications. Despite these benefits, few have validated their propensities to generate outputs with in vivo functionality, which would enhance their value as accurate and interpretable evolutionary algorithms. We demonstrate the power of epistasis inferred from natural protein families to evolve sequence variants in an algorithm we developed called sequence evolution with epistatic contributions (SEEC). Utilizing the Hamiltonian of the joint probability of sequences in the family as fitness metric, we sampled and experimentally tested for in vivo [Formula: see text]-lactamase activity in Escherichia coli TEM-1 variants. These evolved proteins can have dozens of mutations dispersed across the structure while preserving sites essential for both catalysis and interactions. Remarkably, these variants retain family-like functionality while being more active than their wild-type predecessor. We found that depending on the inference method used to generate the epistatic constraints, different parameters simulate diverse selection strengths. Under weaker selection, local Hamiltonian fluctuations reliably predict relative changes to variant fitness, recapitulating neutral evolution. SEEC has the potential to explore the dynamics of neofunctionalization, characterize viral fitness landscapes, and facilitate vaccine development.


Asunto(s)
Epistasis Genética , Proteínas , Filogenia , Proteínas/genética , Mutación , Fenotipo , Evolución Molecular , Aptitud Genética , Modelos Genéticos
3.
Proc Natl Acad Sci U S A ; 117(11): 5873-5882, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123092

RESUMEN

We introduce a model of amino acid sequence evolution that accounts for the statistical behavior of real sequences induced by epistatic interactions. We base the model dynamics on parameters derived from multiple sequence alignments analyzed by using direct coupling analysis methodology. Known statistical properties such as overdispersion, heterotachy, and gamma-distributed rate-across-sites are shown to be emergent properties of this model while being consistent with neutral evolution theory, thereby unifying observations from previously disjointed evolutionary models of sequences. The relationship between site restriction and heterotachy is characterized by tracking the effective alphabet dynamics of sites. We also observe an evolutionary Stokes shift in the fitness of sequences that have undergone evolution under our simulation. By analyzing the structural information of some proteins, we corroborate that the strongest Stokes shifts derive from sites that physically interact in networks near biochemically important regions. Perspectives on the implementation of our model in the context of the molecular clock are discussed.


Asunto(s)
Secuencia de Aminoácidos/fisiología , Evolución Molecular , Flujo Genético , Proteínas/química , Proteínas/fisiología , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Biología Computacional/métodos , Simulación por Computador , Modelos Biológicos , Modelos Moleculares , Filogenia , Conformación Proteica , Dominios Proteicos , Alineación de Secuencia
4.
Nat Commun ; 9(1): 2511, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955037

RESUMEN

RNA-protein interactions permeate biology. Transcription, translation, and splicing all hinge on the recognition of structured RNA elements by RNA-binding proteins. Models of RNA-protein interactions are generally limited to short linear motifs and structures because of the vast sequence sampling required to access longer elements. Here, we develop an integrated approach that calculates global pairwise interaction scores from in vitro selection and high-throughput sequencing. We examine four RNA-binding proteins of phage, viral, and human origin. Our approach reveals regulatory motifs, discriminates between regulated and non-regulated RNAs within their native genomic context, and correctly predicts the consequence of mutational events on binding activity. We design binding elements that improve binding activity in cells and infer mutational pathways that reveal permissive versus disruptive evolutionary trajectories between regulated motifs. These coupling landscapes are broadly applicable for the discovery and characterization of protein-RNA recognition at single nucleotide resolution.


Asunto(s)
Productos del Gen tat/química , ARN Nucleotidiltransferasas/química , Proteínas de Unión al ARN/química , ARN/química , Proteínas Reguladoras y Accesorias Virales/química , Secuencia de Aminoácidos , Bacteriófago lambda/química , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Productos del Gen tat/genética , Productos del Gen tat/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Virus de la Inmunodeficiencia Bovina/química , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína , ARN/genética , ARN/metabolismo , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ARN , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA