Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374680

RESUMEN

One of the most important fields of study in material science is surface characterization. This topic is currently a field of growing interest as many functional properties depend on the surface texture. In this paper the authors, after a short a review of different methods for surface topography characterization and the determination of the traceability problems that arise in this type of measurements, propose four different designs of material standards that can be used to calibrate the most common optical measuring instruments used for these tasks, such as measuring microscopes, metallurgical microscopes, confocal microscopes, focus variation microscopes, etc. The authors consider that the use of this type of standards (or others similar to them) could provide a step forward in assuring metrological traceability for different metrological characteristics that enables a more precise measurement of surface features with optical measuring instruments. In addition, authors expect that this work could lay the groundwork for the development of custom standards with specialized features tuned to gain a better metrological control when measuring specific geometrical surface properties.

2.
Materials (Basel) ; 12(24)2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31835585

RESUMEN

Coordinate metrology techniques are widely used in industry to carry out dimensional measurements. For applications involving measurements in the submillimeter range, the use of optical, non-contact instruments with suitable traceability is usually advisable. One of the most used instruments to perform measurements of this type is the confocal microscope. In this paper, the authors present a complete calibration procedure for confocal microscopes designed to be implemented preferably in workshops or industrial environments rather than in research and development departments. Therefore, it has been designed to be as simple as possible. The procedure was designed without forgetting any of the key aspects that need to be taken into account and is based on classical reference material standards. These standards can be easily found in industrial dimensional laboratories and easily calibrated in accredited calibration laboratories. The procedure described in this paper can be easily adapted to calibrate other optical instruments (e.g., focus variation microscopes) that perform 3D dimensional measurements in the submillimeter range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA