RESUMEN
Lameness affects animal mobility, causing pain and discomfort. Lameness in early stages often goes undetected due to a lack of observation, precision, and reliability. Automated and non-invasive systems offer precision and detection ease and may improve animal welfare. This study was conducted to create a repository of images and videos of sows with different locomotion scores. Our goal is to develop a computer vision model for automatically identifying specific points on the sow's body. The automatic identification and ability to track specific body areas, will allow us to conduct kinematic studies with the aim of facilitating the detection of lameness using deep learning. The video database was collected on a pig farm with a scenario built to allow filming of sows in locomotion with different lameness scores. Two stereo cameras were used to record 2D videos images. Thirteen locomotion experts assessed the videos using the Locomotion Score System developed by Zinpro Corporation. From this annotated repository, computational models were trained and tested using the open-source deep learning-based animal pose tracking framework SLEAP (Social LEAP Estimates Animal Poses). The top-performing models were constructed using the LEAP architecture to accurately track 6 (lateral view) and 10 (dorsal view) skeleton keypoints. The architecture achieved average precisions values of 0.90 and 0.72, average distances of 6.83 and 11.37 in pixel, and similarities of 0.94 and 0.86 for the lateral and dorsal views, respectively. These computational models are proposed as a Precision Livestock Farming tool and method for identifying and estimating postures in pigs automatically and objectively. The 2D video image repository with different pig locomotion scores can be used as a tool for teaching and research. Based on our skeleton keypoint classification results, an automatic system could be developed. This could contribute to the objective assessment of locomotion scores in sows, improving their welfare.
Asunto(s)
Aprendizaje Profundo , Locomoción , Grabación en Video , Animales , Locomoción/fisiología , Porcinos , Grabación en Video/métodos , Femenino , Cojera Animal/diagnóstico , Cojera Animal/fisiopatología , Fenómenos Biomecánicos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/fisiopatologíaRESUMEN
The aim of this study was to develop and evaluate a machine vision algorithm to assess the pain level in horses, using an automatic computational classifier based on the Horse Grimace Scale (HGS) and trained by machine learning method. The use of the Horse Grimace Scale is dependent on a human observer, who most of the time does not have availability to evaluate the animal for long periods and must also be well trained in order to apply the evaluation system correctly. In addition, even with adequate training, the presence of an unknown person near an animal in pain can result in behavioral changes, making the evaluation more complex. As a possible solution, the automatic video-imaging system will be able to monitor pain responses in horses more accurately and in real-time, and thus allow an earlier diagnosis and more efficient treatment for the affected animals. This study is based on assessment of facial expressions of 7 horses that underwent castration, collected through a video system positioned on the top of the feeder station, capturing images at 4 distinct timepoints daily for two days before and four days after surgical castration. A labeling process was applied to build a pain facial image database and machine learning methods were used to train the computational pain classifier. The machine vision algorithm was developed through the training of a Convolutional Neural Network (CNN) that resulted in an overall accuracy of 75.8% while classifying pain on three levels: not present, moderately present, and obviously present. While classifying between two categories (pain not present and pain present) the overall accuracy reached 88.3%. Although there are some improvements to be made in order to use the system in a daily routine, the model appears promising and capable of measuring pain on images of horses automatically through facial expressions, collected from video images.