RESUMEN
Herpes simplex virus type 2 (HSV-2) is the most common agent of sexually transmitted infections around the world. Currently, no vaccine is available, and acyclovir is the reference compound in treatment HSV-2 infections. However, the emergence of resistant strains has reduced the efficacy in treatment. Several studies have shown marine seaweed biological activities, but there are no studies yet about the activity anti-HSV-2 of two its secundary metabolites, atomaric acid (1) and marine dolastane (2), isolated from Stypopodium zonale and Canistrocarpus cervicornis respectively. Therefore, we evaluated the anti-HSV-2 activity of compounds 1 and 2. Both compounds showed anti-HSV-2 activity with low cytotoxicity and compound 1 inactivated 90% of the viral particles at 50 µM. Both compounds inhibited the penetration and results in silico indicated the compound 1 as possible therapy alternative anti -HSV-2.
RESUMEN
One of the effects of the current COVID-19 pandemic is that low-income countries were pushed further into extreme poverty, exacerbating social inequalities and increasing susceptibility to drug use/abuse in people of all ages. The risks of drug abuse may not be fully understood by all members of society, partly because of the taboo nature of the subject, and partly because of the considerable gap between scientific production/understanding and communication of such knowledge to the public at large. Drug use is a major challenge to social development and a leading cause of school dropout rates worldwide. Some public policies adopted in several countries in recent decades failed to prevent drug use, especially because they focused on imposing combative or coercive measures, investing little or nothing in education and prevention. Here we highlight the role of neuroscience education as a valid approach in drug use education and prevention. We propose building a bridge between schools and scientists by promoting information, student engagement and honest dialogue, and show evidence that public policy regulators should be persuaded to support such science-based education programs in their efforts to effect important positive changes in society.
RESUMEN
It has been recently demonstrated that HIV-1 reverse transcriptase is the target of two diterpenes, (6 R)-6-hydroxydichotoma-3,14-diene-1,17-dial (compound 1) and (6 R)-6-acetoxydichotoma-3,14-diene-1,17-dial (compound 2), that inhibit HIV-1 replication in vitro. In this work, the effects of both diterpenes on the kinetic properties of the recombinant HIV-1 reverse transcriptase (RT) enzyme were evaluated. RNA-dependent DNA-polymerase (RDDP) activity assays demonstrated that both diterpenes behave as non-competitive inhibitors with respect to dTTP and uncompetitive inhibitors with respect to poly(rA).oligo(dT) template primers. The K(i) values obtained for compounds 1 and 2 were 10 and 35 microM, respectively. Neither of these diterpenes affected the DNA-dependent DNA-polymerase (DDDP) activity of the HIV-1 RT. The RDDP activities of AMV-RT and MMLV-RT enzymes were also inhibited by compounds 1 and 2. In contrast to the HIV-1 enzyme, the DDDP activities of AMV-RT and MMLV-RT enzymes were significantly reduced by compound 1. Taken together, our results demonstrate that compound 1 is a more effective inhibitor of the viral reverse transcriptases from HIV-1, AMV and MMLV than compound 2. The kinetic behavior analyses of the HIV-1 RT demonstrate that both diterpenes have similar mechanisms of inhibition of RDDP activity.