RESUMEN
Aim: Nano-5-aminolevulic acid (NanoALA)-mediated photodynamic therapy (PDT), an oil-in-water polymeric nanoemulsion of ALA, was evaluated in a murine model of breast cancer. Materials & methods: Analysis of ALA-derived protoporphyrin IX production and acute toxicity test, biocompatibility and treatment efficacy, and long-term effect of NanoALA-PDT on tumor progression were performed. Results: The nanoformulation favored the prodrug uptake by tumor cells in a shorter time (1.5 h). As a result, the adverse effects were negligible and the response rates for primary mammary tumor control were significantly improved. Tumor progression was slower after NanoALA-PDT treatment, providing longer survival. Conclusion: NanoALA is a good proactive drug candidate for PDT against cancer potentially applied as adjuvant/neoadjuvant intervention strategy for breast cancer.
Asunto(s)
Ácido Aminolevulínico/uso terapéutico , Neoplasias de la Mama , Fotoquimioterapia , Animales , Neoplasias de la Mama/tratamiento farmacológico , Muerte Celular , Línea Celular Tumoral , Portadores de Fármacos , Humanos , Ratones , Nanomedicina , Fármacos Fotosensibilizantes/uso terapéuticoRESUMEN
BACKGROUND: This paper introduces a new nanoformulation of 5-aminolevulinic acid (nano-ALA) as well as a novel quantitative approach towards evaluating field cancerization for actinic keratosis and/or skin photodamage. In this pilot study, we evaluated field cancerization using nano-ALA and methyl aminolevulinate (MAL), the latter being commercialized as Metvix(®). METHODS AND RESULTS: Photodynamic therapy was used for the treatment of patients with selected skin lesions, whereas the fluorescence of the corresponding photosensitizer was used to evaluate the time evolution of field cancerization in a quantitative way. Field cancerization was quantified using newly developed color image segmentation software. Using photodynamic therapy as the precancer skin treatment and the approach introduced herein for evaluation of fluorescent area, we found that the half-life of field cancerization reduction was 43.3 days and 34.3 days for nano-ALA and MAL, respectively. We also found that nano-ALA targeted about 45% more skin lesion areas than MAL. Further, we found the mean reduction in area of skin field cancerization was about 10% greater for nano-ALA than for MAL. CONCLUSION: Although preliminary, our findings indicate that the efficacy of nano-ALA in treating skin field cancerization is higher than that of MAL.