RESUMEN
Candida albicans is responsible for most of the nosocomial infections that affect immunocompromised individuals. We investigated the application of eosin in photodynamic inactivation as a strategy in the inhibition of the growth of C. albicans and the morphological variation and growth dynamics in light of fractal theory. The damage caused to fungal structures alters the roughness of the colony, and these changes were described by parameters that were defined by mathematical models. Proliferation of the fungi should be inhibited in the center of the colonies and the analysis of the edges gives an indication about the dynamics of growth and cell reproduction.
Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , Fármacos Fotosensibilizantes/química , Fractales , Candida albicans , Modelos TeóricosRESUMEN
The search for new materials that can be applied in the treatment of injured human tissues has led to the development of new dressings. Membranes have potential as dressing materials because they can be fitted to and interact with the tissue surface. In this study, we analyze the morphological properties and wettability of latex membranes, along with the incorporation of the photosensitizer methylene blue, in the context of the utility of the membranes in curative applications involving photodynamic therapy (PDT). It was observed that deposition of the photosensitizer into latex membranes increased both the surface roughness and wettability. Antifungal testing indicated that antimicrobial PDT assisted by the latex membranes incorporating methylene blue effectively inactivated Candida albicans.
Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Colorantes/química , Látex , Membranas Artificiales , Azul de Metileno/química , Azul de Metileno/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/efectos de la radiación , FotoquimioterapiaRESUMEN
Candida albicans is responsible for the majority of nosocomial infections affecting immunocompromised patients. Systemic antifungals may promote microbial resistance, which has led to the search for alternative treatments, such as photothermal therapy (PTT). PTT assumes that the interaction of electromagnetic radiation with a photothermal agent generates heat that can lead to the destruction of tumor cells and the death of microorganisms. Carbon nanotubes (CNTs) have the potential for applications in biomedical systems, including acting as controlled deliverers of drugs, biosensors and scaffolds for tissue engineering and regenerative medicine. Furthermore, the absorption of radiation by CNTs in the infrared region induces an increase in temperature, which makes CNTs candidates for photothermal agents. In this work, the photothermal inactivation of C. albicans was evaluated by multiple wall CNTs associated with laser radiation in the near-infrared region. The mechanisms that are involved in inactivation were evaluated through cell susceptibility studies and an analysis of microscopic images that are associated with mathematical models and fractal concepts. The results indicate that direct contact between the cells and CNTs without irradiation does not lead to cell death, whereas the laser-mediated process is effective in inactivation. The application of the laws of scale and fractal concepts indicate that in the control groups, there are two distinct regimes that are delimited by the mean diameter of the microorganisms, as described by the Eden model and by the quasi-Euclidean surface. For the irradiated groups, the surfaces present only one regime described by Kardar-Parisi-Zhang, KPZ. The analysis of the fractality of the system by mathematical models can help in the identification of new strategies for the inactivation of microorganisms.
Asunto(s)
Candida albicans/efectos de la radiación , Fractales , Luz , Modelos Teóricos , Nanotubos de Carbono/química , Temperatura , Candida albicans/ultraestructura , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de la radiaciónRESUMEN
Dipping films from epicuticular wax (EW) were prepared as model systems of epicuticular wax films found in plants. In these films, the growth uniformity, surface morphology, and hydrophobicity were examined. It was observed growth uniformity (linear growth) only from the fifth layer onwards because of the influence of substrate. The surface morphology of the films was found to be composed of pores formed by aggregates of EW molecules, both with a fractal form. An increase in the number of film layers resulted in the increase of the number of pores up to a maximum value followed by a decrease. Such increase was assigned to the growth of aggregates whereas the decrease was explained by the increase of pore sizes, because during the growth of the aggregates, the small pores are replaced by the large pores. Hydrophobicity increased with the number of layers, which was associated with the increase of irregularities on the surface caused by the pores and aggregates. In addition, it was observed that the number of pores increased with temperature. This was explained by the increase in the mobility of EW molecules, which led to a larger amount of EW molecules deposited. Based on our results and the advantages offered by dipping films - including the control of thickness and structure - this type of film is feasible as a model for studies of cuticular water transport in plants.
RESUMEN
The increasing and indiscriminate use of pesticides may lead to the intoxication and contamination of the environment and foods. In addition, pesticides can cause fungal resistance promoting the selection of resistant phytopathogenic fungi. This is a problem in the agricultural and human health areas, which leads to a need for developing new methodologies to address this problem. Photodynamic inactivation is a promising strategy involving the association of a photosensitizer (PS), light, and molecular oxygen to inhibit the growth of microorganisms. In this work, the PS acridine orange (AO) was deposited using the spray layer-by-layer technique. The effectiveness of the method was evaluated by the analysis of the growth evolution of the colonies as a function of the amount of PS layers applied in field in the presence of sunlight. Image processing and analysis of the fractal theory were used to evaluate the growth of the colonies. The results revealed that AO is a candidate PS for use in field. It was possible to observe the reduction of the growth dynamics of the colonies with the increase of the number of PS layers. The parameters related to the fractality of the system were described by mathematical models of the fractal growth of interfaces. The knowledge of these parameters can help to identify new strategies for the control of phytopathogenic microorganisms that directly affect agricultural production.
Asunto(s)
Naranja de Acridina/farmacología , Antifúngicos/farmacología , Fractales , Hongos/efectos de los fármacos , Modelos Biológicos , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Naranja de Acridina/química , Antifúngicos/química , Hongos/crecimiento & desarrollo , Humanos , Pruebas de Sensibilidad Microbiana , Fármacos Fotosensibilizantes/química , Luz SolarRESUMEN
The use of layer-by-layer (LbL) deposition technique allows materials, such as drugs, to be self-assembled in multilayers with other electrolytes by combining their properties in a nanostructured system. Triclosan (TCS) is commonly used as a drug because of its bactericidal action, while erythrosine (ERY) has been used as a photosensitizer in photodynamic therapies because of its high light absorptivity in the visible region of the electromagnetic spectrum. The major advantage of investigating systems immobilized in LbL films is the benefit of characterizing the interaction through available substances in solid state techniques. It was possible to immobilize in LbL films, ERY, and ERYâ¯+â¯TCS. The results show that the growth of the films was linear, indicating the deposition of the same amount of material from the first bilayer without substrate interference. The release analysis showed slow kinetics, which occurred more rapidly for ERY LbL films, probably due to apparent activation energy, which were higher for films with TCS. The combination of TCS, ERY, and laser light (532â¯nm) for photodynamic inactivation of the fungus Candida albicans was analyzed, and the results were promising for future studies in applications, such as coating surfaces of dental implants.
Asunto(s)
Candida albicans/efectos de los fármacos , Eritrosina/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Triclosán/uso terapéutico , Preparaciones de Acción Retardada , Relación Dosis-Respuesta a Droga , Eritrosina/administración & dosificación , Eritrosina/farmacocinética , Luz , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacocinética , Triclosán/administración & dosificación , Triclosán/farmacocinéticaRESUMEN
Candida albicans is responsible for many of the infections affecting immunocompromised individuals. Although most C. albicans are susceptible to antifungal drugs, uncontrolled use of these drugs has promoted the development of resistance to current antifungals. The clinical implication of resistant strains has led to the search for safer and more effective drugs as well as alternative approaches, such as controlled drug release using liposomes and photodynamic inactivation (PDI), to eliminate pathogens by combining light and photosensitizers. In this study, we used layer-by-layer (LBL) assembly to immobilize triclosan and acridine orange encapsulated in liposomes and investigated the possibility of controlled release using light. Experiments were carried out to examine the susceptibility of C. albicans to PDI. The effects of laser irradiation were investigated by fluorescence microscopy, atomic force microscopy, and release kinetics. Liposomes were successfully prepared and immobilized using the self-assembly LBL technique. Triclosan was released more quickly when the LBL film was irradiated. The release rate was approximately 40% higher in irradiated films (fluence of 15J/cm2) than in non-irradiated films. The results of the susceptibility experiments and surface morphological analysis indicated that C. albicans cell death is caused by photodynamic inactivation. Liposomes containing triclosan and acridine orange may be useful for inactivating C. albicans using light. Our results lay the foundation for the development of new clinical strategies to control resistant strains.
Asunto(s)
Naranja de Acridina/química , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Liposomas/química , Fármacos Fotosensibilizantes/química , Triclosán/química , Naranja de Acridina/metabolismo , Naranja de Acridina/farmacología , Antifúngicos/química , Candida albicans/efectos de la radiación , Liberación de Fármacos/efectos de la radiación , Rayos Láser , Liposomas/metabolismo , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/farmacología , Triclosán/metabolismo , Triclosán/farmacologíaRESUMEN
The development of systems for the controlled release of drugs is important because they allow the control of drug absorption and tissue distribution and also can reduce local toxicity. This study aimed to assemble and characterize two types of release systems, consisting of layer-by-layer films obtained from poly(allylamine) hydrochloride with chlorophyll (PAH/CHL films) or chlorophyll incorporated into dipalmitoylphosphatidylcholine liposomes (PAH/Lip+CHL films). For these systems, the molecular aggregation, growth process, thermally stimulated desorption, wettability, and controlling release of CHL was studied by using UV-vis spectroscopy and wetting contact angle analysis. In addition, experiments of photodynamic inactivation using PAH/CHL or PAH/Lip+CHL films with a 633-nm laser light were performed and the susceptibility of Candida albicans (C. albicans) to this approach was examined. Fluorescence and atomic force microscopies were used to investigate the surface morphology after the application of the photoinactivation procedure. A redshift of the UV-vis spectrum associated to films when compared with the spectrum of the CHL solution indicated a molecular aggregation of CHL molecules in the films. The film growth process was determined by a nucleation and a growth of spheroids or rods for either PAH/Lip+CHL or PAH/CHL films, respectively. Thermally activated desorption experiments indicated that interactions between CHL and PAH (126kJ/mol) in PAH/CHL or between Lip+CHL and PAH (140kJ/mol) in PAH/Lip+CHL films may be governed by electrostatic interactions. The wettability of PAH/Lip+CHL films was larger than that for PAH/CHL films, which can be attributed to hydrophilic groups on the surface of the DPPC liposomes. Release experiments revealed that free CHL in PAH/CHL films was released more slowly than its partner incorporated into liposomes. After the photodynamic inactivation, results of survival fraction and fluorescence microscopy revealed that C. albicans presented similar susceptibility for the two kinds of films. AFM supported the fluorescence one suggesting that cell death of C. albicans may occur due to damages to its cell wall by C. albicans.
Asunto(s)
Candida albicans/efectos de los fármacos , Clorofila/química , Preparaciones de Acción Retardada/síntesis química , Liposomas/síntesis química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Candida albicans/fisiología , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada/administración & dosificación , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Composición de Medicamentos/métodos , Quimioterapia Combinada/métodosRESUMEN
BACKGROUND: A novel approach for photodynamic inactivation of Candida albicans is proposed. This method consists of realizing inactivation using ultraviolet light (254nm) combined with spraying layer-by-layer films of acridine orange. METHODS: To evaluate the effectiveness of the approach, the C. albicans were immobilized on quartz slices and covered with the spray layer-by-layer films. The fungi were analyzed using experiments to determine cell viability, as well as by fluorescence and atomic force microscopy. RESULTS: Viability analysis of C. albicans after photodynamic inactivation assisted by the films indicates cell death. The extent of cell death increases as the number of film layers increases. Fluorescence and atomic force microscopy analyses corroborated the cell death of C. albicans, which is posited to be due to damages to the fungi cell wall. CONCLUSIONS: Our approach has the potential to be used as an alternative for photodynamic inactivation of C. albicans. In addition, this method could be used in clinical procedures, such as for the decontamination of medical devices.
Asunto(s)
Naranja de Acridina/administración & dosificación , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Fotoquimioterapia/métodos , Impresión Tridimensional , Naranja de Acridina/química , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Composición de Medicamentos/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Rayos UltravioletaRESUMEN
The effect of the laser irradiation (532 nm) on films prepared from Citrobacter freundii mixed with erythrosine dye was investigated by using atomic force microscopy. It was observed that morphological changes of bacterial surfaces after irradiations, which were attributed to cellular damage of the outer membranes, are a result of a photodynamic effect. The results suggested that the combination of erythrosine and laser light at 532 nm could be a candidate to a photodynamic therapy against C. freundii.
Asunto(s)
Citrobacter freundii/efectos de los fármacos , Citrobacter freundii/efectos de la radiación , Colorantes/farmacología , Eritrosina/farmacología , Rayos Láser , Luz , Citrobacter freundii/ultraestructura , Colorantes/química , Eritrosina/química , Microscopía de Fuerza Atómica , Propiedades de Superficie , Factores de TiempoRESUMEN
Interactions between proteins and drugs, which can lead to formation of stable drug-protein complexes, have important implications on several processes related to human health. These interactions can affect, for instance, free concentration, biological activity, and metabolism of the drugs in the blood stream. Here, we report on the UV-Visible spectroscopic investigation on the interaction of bovine serum albumin (BSA) with chlorophyll (Chl) in aqueous solution under physiological conditions. Binding constants at different temperatures--obtained by using the Benesi-Hildebrand equation--were found to be of the same order of magnitude (~10(4)M(-1)) indicating low affinity of Chl with BSA. We have found a hyperchromism, which suggested an interaction between BSA and Chl occurring through conformational changes of BSA caused by exposition of tryptophan to solvent. Films from BSA and Chl obtained at different Chl concentrations showed fractal structures, which were characterized by fractal dimension calculated from microscopic image analysis.
Asunto(s)
Clorofila/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Humanos , Espectrofotometría Ultravioleta/métodosRESUMEN
Sinapinic acid is an interesting material because it is both antioxidant and antibacterial agent. In addition, when illuminated with ultraviolet light, it can exhibit the so-called photodimerization process. In this paper, we report on the investigation of monolayer films from 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SinA) deposited onto poly(allylamine hydrochloride), PAH, films. SinA monolayers were prepared by using the layer-by-layer (LbL) self-assembly technique. Adsorption kinetics curves were well fitted by a biexponential function suggesting that the adsorption process is determined by two mechanisms: nucleation and growth of aggregates. By using wetting contact angle analysis, we have found that SinA monolayers exhibit photoresponsive wettability under UV irradiation (365 nm); that is, wettability decreases with increasing UV irradiation time. The photoresponse of wettability was attributed to photodimerization process. This hypothesis was supported by the dependence of surface morphological structure and absorption on UV irradiation time. The mechanism found in the well-known transcinnamic acid crystals is used to explain the photodimerization process in SinA monolayers.
Asunto(s)
Ácidos Cumáricos/química , Procesos Fotoquímicos , Humectabilidad , Adsorción , Dimerización , Cinética , Microscopía de Fuerza Atómica , Modelos Moleculares , Hidrocarburos Policíclicos Aromáticos/química , Espectrofotometría Ultravioleta , Propiedades de SuperficieRESUMEN
This paper reports on the study of the interactions between ascorbic acid (AA) and bovine serum albumin (BSA) in aqueous solution as well as in films (BSA/AA films) prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet) was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, K, determined for aggregates from BSA and AA was found to be about 10(2) M(-1), which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state.
Asunto(s)
Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Absorción , Animales , Bovinos , Modelos Lineales , Microscopía de Fuerza Atómica , Unión Proteica , Soluciones , Factores de TiempoRESUMEN
We report on the investigation of the surface morphology and DC conductivity of nanostructured layer-by-layer (LbL) films from nickel tetrasulfonated phthalocyanine (NiTsPc) alternated with either multi-walled carbon nanotubes (MWNTs/NiTsPc) or multi-walled carbon nanotubes dispersed in chitosan (MWNTs+Ch/NiTsPc). We have explored the surface morphology of the films by using fractal concepts and dynamic scale laws. The MWNTs/NiTsPc LbL films were found to have a fractal dimension of ca. 2, indicating a quasi Euclidean surface. MWNTs+Ch/NiTsPc LbL films are described by the Lai-Das Sarma-Villain (LDV) model, which predicts the deposition of particles and their subsequent relaxation. An increase in the wetting contact angle of MWNTs+Ch/NiTsPc LbL films was observed, as compared with MWNTs/NiTsPc LbL films, which presented an increase in the fractal dimension of the first system. Room temperature conductivities were found be ca. 0.45 S/cm for MWNTs/NiTsPc and 1.35 S/cm for MWNTs+Ch/NiTsPc.
Asunto(s)
Indoles/química , Nanoestructuras/química , Nanotubos de Carbono/química , Quitosano/química , Conductividad Eléctrica , Isoindoles , Nanoestructuras/ultraestructura , Nanotubos de Carbono/ultraestructura , Propiedades de SuperficieRESUMEN
Impedance spectroscopy has been proven a powerful tool for reaching high sensitivity in sensor arrays made with nanostructured films in the so-called electronic tongue systems, whose distinguishing ability may be enhanced with sensing units capable of molecular recognition. In this study we show that for optimized sensors and biosensors the dielectric relaxation processes involved in impedance measurements should also be considered, in addition to an adequate choice of sensing materials. We used sensing units made from layer-by-layer (LbL) films with alternating layers of the polyeletrolytes, poly(allylamine) hydrochloride (PAH) and poly(vinyl sulfonate) (PVS), or LbL films of PAH alternated with layers of the enzyme phytase, all adsorbed on gold interdigitate electrodes. Surprisingly, the detection of phytic acid was as effective in the PVS/PAH sensing system as with the PAH/phytase system, in spite of the specific interactions of the latter. This was attributed to the dependence of the relaxation processes on nonspecific interactions such as electrostatic cross-linking and possibly on the distinct film architecture as the phytase layers were found to grow as columns on the LbL film, in contrast to the molecularly thin PAH/PVS films. Using projection techniques, we were able to detect phytic acid at the micromolar level with either of the sensing units in a data analysis procedure that allows for further optimization.
Asunto(s)
Técnicas Biosensibles/métodos , Ácido Fítico/química , Impedancia Eléctrica , Electrodos , Oro/química , Ácido Fítico/análisis , Poliaminas/química , Polivinilos/química , Ácidos Sulfónicos/químicaRESUMEN
Langmuir-Blodgett (LB) films from diazobenzene Sudan III have been investigated using surface potential measurements as a function of number of layers and deposition pressures, with the surface potential data being related to molecular dipole moments obtained from theoretical electronic structure calculations. The surface potential increased with the number of layers for SIII LB films, and then tended to saturate. Results from density functional theory (DFT) and UV-vis spectroscopy indicated that the increase is due to addition of layers with oriented molecular dipoles, with the saturation tendency being attributed to a decrease in the amount of material deposited in each layer. The surface potential increased with the surface pressure used for deposition, probably owing to a higher contribution from the vertical component of the dipole moment as a closer molecular packing, which is associated with decreasing conformational entropy, was reached.
RESUMEN
Polyaniline (PAni) thin films were deposited onto BK7 glass substrates using the in situ deposition technique. The control of the time and the aniline concentration in the PAni polymerization reaction on the film deposition allowed us to prepare films with different thickness, down to approximately 25 nm. The film growth process was monitored by measuring the UV-vis spectra and the AFM height profiles of the film surface. The curves of adsorption kinetics were analyzed with the Avrami's model, yielding an exponent n=3, thus indicating nucleation of spheroids at the initial stages of polymerization that grow through a diffusion process. AFM images of the surface height profiles corroborate this hypothesis, with spheroids growing with no preferred orientation during the in situ deposition.
Asunto(s)
Compuestos de Anilina/química , Membranas Artificiales , Cinética , Microscopía de Fuerza Atómica/métodos , Tamaño de la Partícula , Sensibilidad y Especificidad , Espectrofotometría Ultravioleta/métodos , Propiedades de SuperficieRESUMEN
The influence of small amounts of bovine serum albumin (BSA) (nM concentration) on the lateral organization of phospholipid monolayers at the air-water interface and transferred onto solid substrates as one-layer Langmuir-Blodgett (LB) films was investigated. The kinetics of adsorption of BSA onto the phospholipid monolayers was monitored with surface pressure isotherms in a Langmuir trough, for the zwitterionic dipalmitoylphosphatidyl ethanolamine (N,N-dimethyl-PE) and the anionic dimyristoylphosphatidic acid (DMPA). A monolayer of N,N-dimethyl-PE or DMPA incorporating BSA was transferred onto a solid substrate using the Langmuir-Blodgett technique. Atomic force microscopy (AFM) images of one-layer LB films displayed protein-phospholipid domains, whose morphology was characterized using dynamic scaling theories to calculate roughness exponents. For DMPA-BSA films the surface is characteristic of self-affine fractals, which may be described with the Kardar-Parisi-Zhang (KPZ) equation. On the other hand, for N,N-dimethyl-PE-BSA films, the results indicate a relatively flat surface within the globule. The height profile and the number and size of globules varied with the type of phospholipid. The overall results, from kinetics of adsorption on Langmuir monolayers and surface morphology in LB films, could be interpreted in terms of the higher affinity of BSA to the anionic DMPA than to the zwitterionic N,N-dimethyl-PE. Furthermore, the effects from such small amounts of BSA in the monolayer point to a cooperative response of DMPA and N,N-dimethyl-PE monolayers to the protein.
Asunto(s)
Microscopía de Fuerza Atómica , Fosfolípidos/metabolismo , Albúmina Sérica Bovina/metabolismo , Adsorción , Animales , Cinética , Fosfolípidos/química , Presión , Albúmina Sérica Bovina/química , Propiedades de SuperficieRESUMEN
We report on the use of dynamic scale theory and fractal analyses in the study of distinct growth stages of layer-by-layer (LBL) films of poly(allylamine hydrochloride) (PAH) and a side-chain-substituted azobenzene copolymer (Ma-co-DR13). The LBL films were adsorbed on glass substrates and characterized with atomic force microscopy with the Ma-co-DR13 at the top layer. The granular morphology exhibited by the films allowed the observation of the growth process inside and outside the grains. The growth outside the grains was found to follow the Kardar-Parisi-Zhang model, with fractal dimensions of ca. 2.6. One could expect that inside the grains the morphology would be close to a Euclidian surface with fractal dimension of ca. 2 for any growth stage. The latter, however, was observed only for thicker films containing more than 10 bilayers. For thinner films the morphology was well described by a self-affine fractal. Such dependence of the growth behavior with the film thickness is associated with a more complete coverage of adsorption sites in thicker films due to diffusion of polymer molecules.
Asunto(s)
Compuestos Azo/química , Poliaminas/química , Microscopía de Fuerza Atómica , Espectrofotometría UltravioletaRESUMEN
The dynamic scale theory and fractal concepts are employed in the characterization of surface morphological properties of layer-by-layer (LBL) films from poly(o-methoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid) (PVS). The fractal dimensions are found to depend on the procedures to fabricate the POMA/PVS multilayers, particularly with regard to the drying procedures. LBL films obtained via drying in ambient air show a more homogeneous surface, compared to films dried under vacuum or a flow of nitrogen, due to a uniform rearrangement of polymer molecules during solvent evaporation.