Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 10: 2642, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803166

RESUMEN

We have previously reported on the activity of different extracts from Astronium sp. against Candida albicans, with the hydroethanolic extract prepared from leaves of A. urundeuva, an arboreal species widely distributed in arid environments of South America and often used in folk medicine, displaying the highest in vitro activity. Here we have further evaluated the antifungal activity of this extract against strains of C. albicans and C. glabrata, the two most common etiological agents of candidiasis. The extract was tested alone and loaded into a nanostructured lipid system (10% oil phase, 10% surfactant and 80% aqueous phase, 0.5% Poloxamer 407®). In vitro susceptibility assays demonstrated the antifungal activity of the free extract and the microemulsion against both Candida species, with increased activity against C. glabrata, including collection strains and clinical isolates displaying different levels of resistance against the most common clinically used antifungal drugs. Checkerboard results showed synergism when the free extract was combined with amphotericin B against C. albicans. Serial passage experiments confirmed development of resistance to fluconazole but not to the free extract upon prolonged exposure. Although preformed biofilms were intrinsically resistant to treatment with the extract, it was able to inhibit biofilm formation by C. albicans at concentrations comparable to those inhibiting planktonic growth. Cytotoxicity assays in different cell lines as well as an alternative model using Artemia salina L. confirmed a good safety profile of the both free and loaded extracts, and an in vivo assay demonstrated the efficacy of the free and loaded extracts when used topically in a rat model of vaginal candidiasis. Overall, these results reveal the promise of the A. urundeuva leaves extract to be further investigated and developed as an antifungal.

2.
Methods Mol Biol ; 1778: 47-58, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29761430

RESUMEN

Stable-isotope labeling analysis has been used to discover new metabolic pathways and their key regulatory points in a wide range of organisms. Given the complexity of the plant metabolic network, this analysis provides information complementary to that obtained from metabolite profiling that can be used to understand how plants cope with adverse conditions, and how metabolism varies between different cells, tissues, and organs. Here we describe the experimental procedures from sample harvesting and extraction to mass spectral analysis and interpretation that allow the researcher to perform 13C-labeling experiments. A wide range of plant material, from single cells to whole plants, can be used to investigate the metabolic fate of the 13C from a predefined tracer. Thus, a key point of this analysis is to choose the correct biological system, the substrate and the condition to be investigated; all of which implicitly relies on the biological question to be investigated. Rapid sample quenching and a careful data analysis are also critical points in such studies. By contrast to other metabolomic approaches, stable-isotope labeling can provide information concerning the fluxes through metabolic networks, which is essential for understanding and manipulating metabolic phenotypes and therefore of pivotal importance for both systems biology and plant metabolic engineering.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Plantas/metabolismo , Biología de Sistemas/métodos , Plantas/genética
3.
Int J Nanomedicine ; 10: 5081-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300640

RESUMEN

The genus Astronium (Anacardiaceae) includes species, such as Astronium fraxinifolium, Astronium graveolens, and Astronium urundeuva, which possess anti-inflammatory, anti-ulcerogenic, healing, and antimicrobial properties. Nanostructured lipid systems are able to potentiate the action of plant extracts, reducing the required dose and side effects and improving antimicrobial activity. This work aims to evaluate a nanostructured lipid system that was developed as a strategy to improve the anti-Candida albicans activity of hydroethanolic extracts of stems and leaves from Astronium sp. The antifungal activity against C. albicans (ATCC 18804) was evaluated in vitro by a microdilution technique. In addition to the in vitro assays, the Astronium sp. that showed the best antifungal activity and selectivity index was submitted to an in vivo assay using a model of vulvovaginal candidiasis infection. In these assays, the extracts were either used alone or were incorporated into the nanostructured lipid system (comprising 10% oil phase, 10% surfactant, and 80% aqueous phase). The results indicated a minimal inhibitory concentration of 125.00 µg/mL before incorporation into the nanostructured system; this activity was even more enhanced when this extract presented a minimal inhibitory concentration of 15.62 µg/mL after its incorporation. In vivo assay dates showed that the nanostructure-incorporated extract of A. urundeuva leaves was more effective than both the unincorporated extract and the antifungal positive control (amphotericin B). These results suggest that this nanostructured lipid system can be used in a strategy to improve the in vitro and in vivo anti-C. albicans activity of hydroethanolic extracts of Astronium sp.


Asunto(s)
Anacardiaceae/química , Candida albicans/efectos de los fármacos , Lípidos/química , Nanopartículas/química , Extractos Vegetales/farmacología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA