Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Med Microbiol ; 71(5)2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35575783

RESUMEN

Introduction. Candida spp. are commensal fungal pathogens of humans, but when there is an imbalance in the microbiota, or weak host immunity, these yeasts can become pathogenic, generating high medical costs.Gap Statement. With the increase in resistance to conventional antifungals, the development of new therapeutic strategies is necessary. This study evaluated the in vitro antifungal activity of chlorogenic acid against fluconazole-resistant strains of Candida spp. Mechanism of action through flow cytometry and in silico analyses, as well as molecular docking assays with ALS3 and SAP5, important proteins in the pathogenesis of Candida albicans associated with the adhesion process and biofilm formation.Results. The chlorogenic acid showed in vitro antifungal activity against the strains tested, causing reduced cell viability, increased potential for mitochondrial depolarization and production of reactive oxygen species, DNA fragmentation and phosphatidylserine externalization, indicating an apoptotic process. Concerning the analysis through docking, the complexes formed between chlorogenic acid and the targets Thymidylate Kinase, CYP51, 1Yeast Cytochrome BC1 Complex e Exo-B-(1,3)-glucanase demonstrated more favourable binding energy. In addition, chlorogenic acid presented significant interactions with the ALS3 active site residues of C. albicans, important in the adhesion process and resistance to fluconazole. Regarding molecular docking with SAP5, no significant interactions were found between chlorogenic acid and the active site of the enzyme.Conclusion. We concluded that chlorogenic acid has potential use as an adjuvant in antifungal therapies, due to its anti-Candida activity and ability to interact with important drug targets.


Asunto(s)
Antifúngicos , Fluconazol , Antifúngicos/farmacología , Apoptosis , Biopelículas , Candida , Candida albicans , Ácido Clorogénico/farmacología , Farmacorresistencia Fúngica , Fluconazol/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular
2.
Future Microbiol ; 15: 177-188, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32077323

RESUMEN

The emergence of Candida spp. with resistance to antifungal molecules, mainly the azole class, is an increasing complication in hospitals around the globe. Aim: In the present research, we evaluated the synergistic effects of ketamine with two azole derivatives, itraconazole and fluconazole, on strains of Candida spp. to fluconazole. Materials & methods: The drug synergy was evaluated by quantifying the fractional inhibitory concentration index and by fluorescence microscopy and flow cytometry techniques. Results: Our achievements showed a synergistic effect between ketamine in addition to the two antifungal agents (fluconazole and itraconazole) against planktonic cells and biofilms of Candida spp. Conclusion: This combination promoted alteration of membrane integrity, generation of reactive oxygen species, damage to and DNA and externalization of phosphatidylserine.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Fluconazol/farmacología , Itraconazol/farmacología , Ketamina/farmacología , Animales , Biopelículas/efectos de los fármacos , Candida/fisiología , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Fragmentación del ADN , ADN de Hongos/efectos de los fármacos , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Células L , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Fosfatidilserinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Microb Pathog ; 127: 335-340, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30529514

RESUMEN

Emergence of methicilin resistant Staphylococcus aureus (MRSA) strains is a major cause of infirmity worldwide and has limited our therapeutic options against these pathogens. In this regard, the search for candidates with an antimicrobial activity, with a greater efficacy and a lower toxicity, is necessary. As a result, there is greater need to search for resistance modifying agents which, in combination with existing drugs, will restore the efficacy of these drugs. The antibacterial effect of fluoxetine was determined by a broth microdilution method (the M07-A9 method of the Clinical and Laboratory Standard Institute) and flow cytometry techniques in which the probable mechanism of action of the compound was also assessed. The isolates used in the study belonged to the Laboratory of Bioprospecting of Antimicrobial Molecules (LABIMAN) of the Federal University of Ceará. After 24 h, Methicillin-resistant Sthaphylococcus aureus (MRSA) strains showed fluoxetine MICs equal to 64 µg/mL and 128 µg/mL, respectively. Cytometric analysis showed that treatment with fluoxetine caused alterations to the integrity of the plasma membranes and DNA damage, which led to cell death, probably by apoptosis.


Asunto(s)
Antibacterianos/farmacología , Fluoxetina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Daño del ADN , Citometría de Flujo , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos
4.
Mol Biotechnol ; 58(1): 47-55, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26589705

RESUMEN

Gaucher disease (GD) is an orphan disease characterized by the lack or incapacity of glucocerebrosidase (hGCase) to properly process glucosylceramide, resulting in its accumulation in vital structures of the human body. Enzyme replacement therapy supplies hGCase to GD patients with a high-cost recombinant enzyme produced in vitro in mammalian or plant cell culture. In this study, we produced hGCase through the direct injection of recombinant adenovirus in the mammary gland of a non-transgenic goat. The enzyme was secreted in the milk during six days at a level up to 111.1 ± 8.1 mg/L, as identified by mass spectrometry, showing high in vitro activity. The milk-produced hGCase presented a mass correspondent to the intermediary high-mannose glycosylated protein, which could facilitate its delivery to macrophages through the macrophage mannose receptor. Further studies are underway to determine the in vivo delivery capacity of milk-hGCase, but results from this study paves the way toward the generation of transgenic goats constitutively expressing hGCase in the milk.


Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad de Gaucher/genética , Glucosilceramidasa/biosíntesis , Proteínas Recombinantes/administración & dosificación , Adenoviridae/genética , Animales , Femenino , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/patología , Glucosilceramidasa/administración & dosificación , Glucosilceramidasa/genética , Glucosilceramidas/metabolismo , Cabras/genética , Humanos , Glándulas Mamarias Animales/enzimología , Leche/metabolismo
5.
Acta sci. vet. (Impr.) ; 40(3): 01-11, 2012.
Artículo en Inglés | LILACS-Express | VETINDEX | ID: biblio-1457005

RESUMEN

Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specifi c corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specifi c mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most effi cient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specifi c and unique siRNA sequences (Stealth RNaiTM).Dicing to create mixtures of siRNAs. The Diced fragments of siRNA for each gene sequence were pooled and stored at -80o C. Alternatively, chemically synthesiz


Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specifi c corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specifi c mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most effi cient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specifi c and unique siRNA sequences (Stealth RNaiTM).Materials, Methods & Results: For in vitro-produced siRNAs, two segments of the human Ku70 (167 bp in exon 5; and 249 bp in exon 13; NM001469) and Xrcc4 (1

6.
Acta sci. vet. (Impr.) ; 40(3): 01-08, 2012.
Artículo en Inglés | LILACS-Express | VETINDEX | ID: biblio-1457011

RESUMEN

Materials, Methods & Results: In vitro-matured bovine cumulus-oocyte complexes (COC) were manually bisected after cumulus and zona pellucida removal; then, two enucleated hemi-oocytes were paired and fused with either a wild type (WT) or a GFP-expressing (GFP) fetal skin cell at the 11th and 19th passages, respectively. Following chemical activation, reconstructed cloned embryos and zona-free parthenote embryos were in vitro-cultured in microwells, for 7 days, either individually (1 x 100%) or after the aggregation of two structures (2 x 100%) per microwell, as follows: (G1) one WT cloned embryo; (G2) two aggregated WT embryos; (G3) one GFP cloned embryo; (G4) two aggregated GFP embryos; (G5) aggregation of a WT embryo and a GFP embryo; (G6) one parthenote embryo; or (G7) two aggregated parthenote embryos. Fusion (clones), cleavage (Day 2), and blastocyst (Day 7) rates, and embryonic cell allocation were compared by the 2 or Fisher tests. Total cell number (TCN) in blastocysts was analyzed by the Student´s test (P 0.05). Fusion and cleavage rates, and cell allocation were similar between groups. On a per WOW basis, development to the blastocyst stage was similar between groups, except for lower rates of development seen in G3. However, when based on number of embryos per group (one or two), blastocyst development was higher in G1 than all other groups, which were simi


Background: The in vitro production (IVP) of embryos by in vitro fertilization or cloning procedures has been known to cause epigenetic changes in the conceptus that in turn are associated with abnormalities in pre- and postnatal development. Handmade cloning (HMC) procedures and the culture of zona-free embryos in individual microwells provide excellent tools for studies in developmental biology, since embryo development and cell allocation patterns can be evaluated under a wide range of embryo reconstruction arrangements and in in vitro embryo culture conditions. As disturbances in embryonic cell allocation after in vitro embryo manipulations and unusual in vivo conditions during the fi rst third of pregnancy appear to be associated with large offspring, embryo aggregation procedures may allow a compensation for epigenetic defects between aggregated embryos or even may infl uence more favorable cell allocation in embryonic lineages, favoring subsequent development. Thus, the aim of this study was to evaluate in vitro embryo developmental potential and the pattern of cell allocation in blastocysts developed after the aggregation of handmade cloned embryos produced using syngeneic wild type and/or transgenic somatic cells.Materials, Methods & Results: In vitro-matured bovine cumulus-oocyte complexes (COC) were manually bisected after cumulus and zona pellucida removal; then

7.
Acta sci. vet. (Online) ; 40(3): 01-08, 2012.
Artículo en Inglés | VETINDEX | ID: vti-475765

RESUMEN

Materials, Methods & Results: In vitro-matured bovine cumulus-oocyte complexes (COC) were manually bisected after cumulus and zona pellucida removal; then, two enucleated hemi-oocytes were paired and fused with either a wild type (WT) or a GFP-expressing (GFP) fetal skin cell at the 11th and 19th passages, respectively. Following chemical activation, reconstructed cloned embryos and zona-free parthenote embryos were in vitro-cultured in microwells, for 7 days, either individually (1 x 100%) or after the aggregation of two structures (2 x 100%) per microwell, as follows: (G1) one WT cloned embryo; (G2) two aggregated WT embryos; (G3) one GFP cloned embryo; (G4) two aggregated GFP embryos; (G5) aggregation of a WT embryo and a GFP embryo; (G6) one parthenote embryo; or (G7) two aggregated parthenote embryos. Fusion (clones), cleavage (Day 2), and blastocyst (Day 7) rates, and embryonic cell allocation were compared by the 2 or Fisher tests. Total cell number (TCN) in blastocysts was analyzed by the Student´s test (P 0.05). Fusion and cleavage rates, and cell allocation were similar between groups. On a per WOW basis, development to the blastocyst stage was similar between groups, except for lower rates of development seen in G3. However, when based on number of embryos per group (one or two), blastocyst development was higher in G1 than all other groups, which were simi


Background: The in vitro production (IVP) of embryos by in vitro fertilization or cloning procedures has been known to cause epigenetic changes in the conceptus that in turn are associated with abnormalities in pre- and postnatal development. Handmade cloning (HMC) procedures and the culture of zona-free embryos in individual microwells provide excellent tools for studies in developmental biology, since embryo development and cell allocation patterns can be evaluated under a wide range of embryo reconstruction arrangements and in in vitro embryo culture conditions. As disturbances in embryonic cell allocation after in vitro embryo manipulations and unusual in vivo conditions during the fi rst third of pregnancy appear to be associated with large offspring, embryo aggregation procedures may allow a compensation for epigenetic defects between aggregated embryos or even may infl uence more favorable cell allocation in embryonic lineages, favoring subsequent development. Thus, the aim of this study was to evaluate in vitro embryo developmental potential and the pattern of cell allocation in blastocysts developed after the aggregation of handmade cloned embryos produced using syngeneic wild type and/or transgenic somatic cells.Materials, Methods & Results: In vitro-matured bovine cumulus-oocyte complexes (COC) were manually bisected after cumulus and zona pellucida removal; then

8.
Acta sci. vet. (Online) ; 40(3): 01-11, 2012.
Artículo en Inglés | VETINDEX | ID: vti-475627

RESUMEN

Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specifi c corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specifi c mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most effi cient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specifi c and unique siRNA sequences (Stealth RNaiTM).Dicing to create mixtures of siRNAs. The Diced fragments of siRNA for each gene sequence were pooled and stored at -80o C. Alternatively, chemically synthesiz


Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specifi c corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specifi c mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most effi cient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specifi c and unique siRNA sequences (Stealth RNaiTM).Materials, Methods & Results: For in vitro-produced siRNAs, two segments of the human Ku70 (167 bp in exon 5; and 249 bp in exon 13; NM001469) and Xrcc4 (1

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA