Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Anat Histol Embryol ; 51(4): 435-442, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35485276

RESUMEN

In this study, atomic force microscopy (AFM), microtomography (MCT-2D and MCT-3D) and energy-dispersive X-ray fluorescence spectrometry (EDXRF) were used to generate parameters of the microstructure of the hoof capsule of pigmented and partial albino buffaloes. Seventy-two digits of adult pigmented buffaloes and 16 of partial albino buffaloes were used and equally divided into thoracic and pelvic limbs and medial and lateral claws. Fragments of 10 mm × 10 mm of the dorsal wall, abaxial wall and pre-bulbar sole were collected. The parametric assumptions were tested using a Shapiro-Wilk test (normality). The independent t-test was used to compare the means at a 5% significance level. AFM demonstrated that the hoof surface of pigmented buffaloes presented with higher average surface roughness (Ra) and root mean square roughness (Rms) (p < 0.05) than the hoof surface of partial albino buffaloes. MCT-2D revealed that pigmented buffaloes had extra tubular keratin with a higher density than intratubular keratin. No pores were observed in the hoof capsule of the buffalo digits. MCT-3D demonstrated that pigmented buffaloes have a higher percentage of large and intermediate horn tubules than partial albino buffaloes. However, this difference was not statistically significant. Partial albino buffaloes showed a statistically higher number of horn tubules/mm2 than pigmented buffaloes (p < 0.05). EDXRF revealed a higher amount of sulphur (S) in the hoof capsule of pigmented buffaloes, and the partial albino buffaloes presented a higher number of minerals such as calcium (Ca), potassium (K), zinc (Zn) and copper (Cu).


Asunto(s)
Pezuñas y Garras , Animales , Miembro Posterior , Queratinas/química
2.
Vet Med (Praha) ; 67(8): 395-407, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716188

RESUMEN

The techniques of microtomography (Micro-CT), confocal laser scanner microscopy (CLSM), atomic force microscopy (AFM), nanoindentation - Vickers hardness (Nano-VH) and X-ray fluorescence (XRF) are undeniably important to the modern study of bovine podiatry. These techniques are also employed in engineering, physics and in the assessment of biomaterials used in reconstructive or experimental surgeries in bovine and bubaline claws. Although studies involving these analyses are still inconspicuous in veterinary medicine, these technologies represent a new paradigm in this area, enabling the development of new lines of research. The objective of this review is to gather information about the microstructural aspects of bovine and bubaline claws, concerning the intratubular and extratubular keratin, which is responsible for the physical and mechanical structure of the claw capsule. This study elucidates different methods used to evaluate the hooves of healthy and sick animals through a micrometric analysis and nano-scale analyses. We would like to emphasise that the described techniques can be applied to study other species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA