RESUMEN
Acute promyelocytic leukemia (APL) in children is associated with a favorable initial prognosis. However, minimal residual disease (MRD) follow-up remains poorly defined, and relapse cases are concerning due to their recurrent nature. Thus, we report two electrochemical flexible genosensors based on polypyrrole (PPy) and graphene quantum dots (GQDs) for label-free PML-RARα oncogene detection. Atomic force microscopy (AFM), scanning electron microscope (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize the technological biosensor development. M7 and APLB oligonucleotide sequences were used as bioreceptors to detect oncogenic segments on chromosomes 15 and 17, respectively. AFM characterization revealed heterogeneous topographical surfaces with maximum height peaks for sensor layers when tested with positive patient samples. APLB/Genosensor exhibited a percentage change in anode peak current (ΔI) of 423 %. M7/Genosensor exhibited a ΔI of 61.44 % for more concentrated cDNA samples. The described behavior is associated with the biospecific recognition of the proposed biosensors. Limits of detection (LOD) of 0.214 pM and 0.677 pM were obtained for APLB/Genosensor and M7/Genosensor, respectively. The limits of quantification (LOQ) of 0.648 pM and 2.05 pM were estimated for APLB/Genosensor and M7/Genosensor, respectively. The genosensors showed reproducibility with a relative standard deviation of 7.12 % for APLB and 1.18 % for M7 and high repeatability (9.89 % for APLB and 1.51 % for M7). In addition, genetic tools could identify the PML-RARα oncogene in purified samples, plasmids, and clinical specimens from pediatric patients diagnosed with APL with high bioanalytical performance. Therefore, biosensors represent a valuable alternative for the clinical diagnosis of APL and monitoring of MRD with an impact on public health.
Asunto(s)
Grafito , Leucemia Promielocítica Aguda , Puntos Cuánticos , Humanos , Niño , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/genética , Polímeros , Pirroles , Reproducibilidad de los ResultadosRESUMEN
A biomass amino silica-functionalized material was successfully prepared by a simple sol-gel method. 3-Aminopropyltriethoxysilane (APTES) was added to a tannin-rich grape residue to improve its physicochemical properties and enhance the adsorption performance. The APTES functionalization led to significant changes in the material's characteristics. The functionalized material was efficiently applied in the removal of methyl orange (MO) due to its unique characteristics, such as an abundance of functional groups on its surface. The adsorption process suggests that the electrostatic interactions were the main acting mechanism of the MO dye removal, although other interactions can also take place. The functionalized biomass achieved a very high MO dye maximum adsorption capacity (Q max) of 361.8 mg g-1. The temperature positively affected the MO removal, and the thermodynamic studies indicated that the adsorption of MO onto APTES-functionalized biomass was spontaneous and endothermic, and enthalpy is driven in the physisorption mode. The regeneration performance revealed that the APTES-functionalized biomass material could be easily recycled and reused by maintaining very good performance even after five cycles. The adsorbent material was also employed to treat two simulated dye house effluents, which showed 48% removal. At last, the APTES biomass-based material may find significant applications as a multifunctional adsorbent and can be used further to separate pollutants from wastewater.
RESUMEN
The production of more efficient yeast-based fuel cells (YFCs) depends on a combination of effective proton exchange membranes, electron mediators and current collectors. The adhesion of organisms on electrode surface plays a key role in the electron transfer process optimizing the generated power density. In this work, it is reported the preparation of a new YFC prototype using membranes of polyvinyl alcohol/ phosphoric acid and anodes of carbon nanotubes/polyurethane. The high surface area for yeast adhesion and the strong interaction established between cells/carbon nanotubes favor the energy generation in fuel cell. To evaluate the influence of external mediators and the consumption of feed solution (glucose) on performance of YFC, the kinetics of current generation of resulting fuel cells was analyzed. Results reveal that increases in the impedance of electrodes on generated power can be minimized by periodical infusion of feed fuel, preserving 70% of maximum power, representing an important condition for prolonged activity of fuel cell.
Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Nanotubos de Carbono/química , Poliuretanos/química , Protones , Saccharomyces cerevisiae/metabolismo , Electrodos , Glucosa/metabolismoRESUMEN
We report an alternative random laser (RL) architecture based on a flexible and ZnO-enriched cellulose acetate (CA) fiber matrix prepared by electrospinning. The electrospun fibers, mechanically reinforced by polyethylene oxide and impregnated with zinc oxide powder, were applied as an adsorbent surface to incorporate plasmonic centers (silver nanoprisms). The resulting structures - prepared in the absence (CA-ZnO) and in the presence of silver nanoparticles (CA-ZnO-Ag) - were developed to support light excitation, guiding and scattering prototypes of a RL. Both materials were excited by a pulsed (5 Hz, 5 ns) source at 355 nm and their fluorescence emission monitored at 387 nm. The results suggest that the addition of silver nanoprisms to the ZnO- enriched fiber matrix allows large improvement of the RL performance due to the plasmon resonance of the silver nanoprisms, with ~80% reduction in threshold energy. Besides the intensity and spectral analysis, the RL characterization included its spectral and intensity angular dependences. Bending the flexible RL did not affect the spectral characteristics of the device. No degradation was observed in the random laser emission for more than 10,000 shots of the pump laser.
RESUMEN
The detection of traces of substances by surface-sensitive techniques such as surface enhanced Raman spectroscopy (SERS) explores the interaction of adsorbed molecules on plasmonic surfaces to improve the limit of detection of analytes. This article is an overview about recent development in SERS substrates applied in the detection of organophosphorus pesticides on plasmonic surfaces (arrays of metal nanoparticles). The morphology, roughness, chemical functionalization degree, and aggregation level of plasmonic centers are some of the critical parameters to be controlled in the optimization of SERS signal from specific analytes.
Asunto(s)
Compuestos Organofosforados/análisis , Plaguicidas/análisis , Plata/química , Espectrometría Raman , Propiedades de SuperficieRESUMEN
The adhesion of pathogenic bacteria in medical implants and surfaces is a health-related problem that requires strong inhibition against bacterial growth and attachment. In this work, we have explored the enhancement in the antibacterial activity of metal free-based composites under external electric field. It affects the oxidation degree of polypyrrole-based electrodes and consequently the antibacterial activity of the material. A conductive layer of carbon nanotubes (graphite) was deposited on porous substrate of polyurethane (sandpaper) and covered by polypyrrole, providing highly conductive electrodes characterized by intrinsic antibacterial activity and reinforced by electro-enhanced effect due to the external electric field. The bacterial inhibition of composites was monitored from counting of viable cells at different voltage/time of treatment and determination of biofilm inhibition on electrodes and reactors. The external voltage on electrodes reduces the threshold time for complete bacterial inactivation of PPy-based composites to values in order of 30â¯min for Staphylococcus aureus and 60â¯min for Escherichia coli.
Asunto(s)
Electricidad , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Metales/farmacología , Viabilidad Microbiana/efectos de los fármacos , Polímeros/farmacología , Biopelículas/efectos de los fármacos , Recuento de Colonia Microbiana , Impedancia Eléctrica , Técnicas Electroquímicas , Electrodos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Poliuretanos/farmacología , Espectrometría Raman , Staphylococcus aureus/efectos de los fármacosRESUMEN
The improved bactericidal activity of new composites for wound dressing prototypes represents an important strategy for development of more efficient devices that make use of synergistic interaction between components. The doping level of polyaniline represents a critical parameter for its corresponding biologic activity. In this work, it is explored the doping effect of usnic acid on undoped polyaniline, that introduces important advantages namely, improved bactericidal activity of polyaniline and the anti-biofilm properties of lichen derivative. The deposition of the resulting material on polyurethane foam potentializes its applicability as wound dressing, characterizing a new platform for application against Escherichia coli and Staphylococcus aureus.
Asunto(s)
Compuestos de Anilina/química , Antibacterianos/química , Benzofuranos/química , Poliuretanos/química , Compuestos de Anilina/farmacología , Antibacterianos/farmacología , Vendajes , Biopelículas/efectos de los fármacos , Pruebas Antimicrobianas de Difusión por Disco , Portadores de Fármacos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Microscopía Electrónica de Rastreo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiologíaRESUMEN
Multifunctional wearable electronic textiles based on interfacial polymerization of polypyrrole on carbon nanotubes/cotton fibers offer advantages of simple and low-cost materials that incorporate bactericidal, good electrochemical performance, and electrical heating properties. The high conductivity of doped polypyrrole/CNT composite provides textiles that reaches temperature on order of 70 °C with field of 5 V/cm, superior electrochemical performance applied as electrodes of supercapacitor prototypes, reaching capacitance in order of 30 F g-1 and strong bactericidal activity against Staphylococcus aureus. The combination of these properties can be explored in smart devices for heat and microbial treatment on different parts of body, with incorporated storage of energy on textiles.
RESUMEN
Electrical impedance spectroscopy (EIS) appears a promising label-free methodology for the investigation of processes related to the aggregation of macromolecules in solution. Here, we explore the EIS technique as a convenient tool for studying the irreversible aggregation of human insulin and describing its corresponding fibrillation kinetics. The in situ measurement of the electrical response of pure insulin solutions at 60°C allows for the real-time monitoring of the protein fibrillation as a function of the incubation time. The fitting of the EIS data through an equivalent circuit based on a constant phase element provides a simple set of electric parameters whose abrupt changes can be associated to transitions occurring in the organization of the macromolecules. For establishing the reliability of the method proposed, we have compared the protein aggregation profile collected from the EIS data to that obtained from a conventional fluorescence methodology where Thioflavin T (ThT) is used as a dye probe. The description of the fibrillation process is quite similar in both cases, since characteristic times of the same order were found for the consecutive processes associated to the initial lag phase of insulin fibrillation, to the rapid growth of amyloidal aggregates and to the final saturation step. Our results suggest that in situ EIS can be considered as a promising approach for the real-time label-free monitoring of protein fibril formation.
Asunto(s)
Amiloide/química , Espectroscopía Dieléctrica/métodos , Insulina/química , Agregación Patológica de Proteínas , Humanos , Cinética , Agregado de Proteínas , Reproducibilidad de los Resultados , Factores de TiempoRESUMEN
The antibacterial behavior of polypyrrole (PPy) depends on a diversity of structural parameters such as surface area, aggregation level and additives (metal nanoparticles) incorporation. This paper summarizes the influence of different preparation procedures of PPy on action of resulting antibacterial composite against Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. The bactericidal action has been assigned to morphology (size of polypyrrole nanoparticles). The electrostatic interaction established between polymer nanoparticles and bacteria provokes the bacterial cell death and returns advantages in comparison with conventional composites of polypyrrole decorated with metal nanoparticles.
Asunto(s)
Antibacterianos/química , Polímeros/química , Pirroles/química , Antibacterianos/farmacología , Pruebas Antimicrobianas de Difusión por Disco , Escherichia coli/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Nanopartículas del Metal/química , Tamaño de la Partícula , Polímeros/farmacología , Pirroles/farmacología , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos XRESUMEN
The development of new fibrilar materials based on electrospinning (ES) technique has a notable history of nearly four centuries of discoveries and results. The eletrospinning manufacturing is one of the most widely reported methods for nanofiber (NF) manufacturing, providing security, high quality and productivity. In spite of the first patent about electrospinning has been applied in April 5(th), 1900 by John Francis Cooley, a historical perspective (since 1600s) about this amazing discovery represents an important step for future applications. Nanofibers have been considered one of the top interesting fundamental study objects for academicians, and greatest intriguing business materials for modern industry. As a consequence, lucrative organizations and companies have explored the relevance of nanofibers. In this paper, the quantity of published manuscripts and patent inventions is presented and the correlation of research activities to the production of new electrospinning materials is shown. China and the United States have been leading in electrospinning and nanofibers development. The company triumph is mostly dependent on applications improvement relevant for broader business society. A dramatic rise of interest in nanofibers produced by electrospinning technique has been confirmed due to the publication data, author's affiliation, keywords, and essential characterization procedures. Is has been shown that the number of publications on electrospinning and nanofibers researches from academic institutions is higher than industrial laboratories. More than 1,891 patents using the term "electrospinning" and 2,960 with the term "nanofibers" according to the European Patent Office at title or abstract have been filed around the world up to 2013. These numbers just continue to increase along with worldwide ES-related sales. Curiously, for the same period 11,973 electrospinning documents and 18,679 nanofibers-related (mainly manuscripts) were published considering the Scopus database with the same terms in the title, abstract or using keywords. Thus, statistically, there are more published manuscripts worldwide than patents for both keywords.
Asunto(s)
Nanofibras , Patentes como Asunto , Ingeniería de TejidosRESUMEN
This work is dedicated to the investigation of the prevailing molecular interactions between Cratylia mollis (Cramoll) and Concanavalin A (Con A) lectins and ionic (sodium dodecylsulfate, SDS) and non-ionic (Triton X-100, TX-100) surfactants, where we have used electrical impedance spectroscopy to map the dielectric characteristics of mixed lectin/surfactant solutions. The disorder induced in the lectin conformation is proportional to the extent of the access of the surfactant to the fluorophore present in the protein, resulting in its progressive unfolding. The complete unfolding of the lectin is associated to the formation of micelles in the core of the protein, each one of them containing a large number of detergent molecules, and therefore the process can be accompanied by measuring the electrical response of the binary surfactant/lectin system. For instance, the change in the real part of the impedance as a function of the relative concentration of the surfactant in the binary solution exhibits a breaking in its linear behavior that can be taken as indicative of a qualitative change in the environment surrounding the protein residue. We consider these results strong evidence in favor of using impedance spectroscopy methods for the analysis of protein-surfactant associations and for the characterization of the interactions that must prevail when the protein unfolds as the relative surfactant concentration is increased in aqueous solutions of these binary systems.
Asunto(s)
Concanavalina A/química , Espectroscopía Dieléctrica/métodos , Impedancia Eléctrica , Octoxinol/química , Desplegamiento Proteico , Dodecil Sulfato de Sodio/química , Espectrometría de Fluorescencia , Tensoactivos/químicaRESUMEN
Molecular aggregation plays a key role in the physicochemical properties of dyes and surfactants. In this work, we show that electrical impedance spectroscopy (EIS) provides a practical method for the investigation of processes such as micellization in surfactants and dye dimerization. The electrical characterization of the structural phase transitions associated with aggregation events in these systems allows an accurate and direct determination of relevant parameters such as the corresponding critical concentrations for micelle formation and dimerization of these types of molecules, without the need of recurring to the use of auxiliary probe or reporter molecules. Because of its competitive advantages with respect to currently used methods (such as conductimetry and spectroscopic techniques), we argue that when implemented along the procedures described in this work, EIS becomes a simple and convenient technique for the characterization of aggregation processes in soft matter.