Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 356(6): e2200653, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36922908

RESUMEN

Vanillin is the main component of natural vanilla extract and is responsible for its flavoring properties. Besides its well-known applications as an additive in food and cosmetics, it has also been reported that vanillin can inhibit fungi of clinical interest, such as Candida spp., Cryptococcus spp., Aspergillus spp., as well as dermatophytes. Thus, the present work approaches the synthesis of a series of vanillin derivatives with 1,2,3-triazole fragments and the evaluation of their antifungal activities against Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Cryptococcus neoformans, Cryptococcus gattii, Trichophyton rubrum, and Trichophyton interdigitale strains. Twenty-two vanillin derivatives were obtained, with yields in the range of 60%-91%, from copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction between two terminal alkynes prepared from vanillin and different benzyl azides. In general, the evaluated compounds showed moderate activity against the microorganisms tested, with minimum inhibitory concentration (MIC) values ranging from 32 to >512 µg mL-1 . Except for compound 3b against the C. gattii R265 strain, all vanillin derivatives showed fungicidal activity for the yeasts tested. The predicted physicochemical and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties for the compounds indicated favorable profiles for drug development. In addition, a four-dimensional structure-activity relationship (4D-SAR) analysis was carried out and provided useful insights concerning the structures of the compounds and their biological profile. Finally, molecular docking calculations showed that all compounds bind favorably at the lanosterol 14α-demethylase enzyme active site with binding energies ranging from -9.1 to -12.2 kcal/mol.


Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Antifúngicos/química , Triazoles/farmacología , Pruebas de Sensibilidad Microbiana
2.
Eur J Med Chem ; 149: 98-109, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29499491

RESUMEN

A simple and efficient Knoevenagel procedure for the synthesis of 2-arylidene indan-1,3-diones is herein reported. These compounds were prepared via ZrOCl2·8H2O catalyzed reactions of indan-1,3-dione with several aromatic aldehydes and using water as the solvent. The 2-arylidene indan-1,3-diones were obtained with 53%-95% yield within 10-45 min. The synthesized compounds were evaluated as inhibitors of the NS2B-NS3 protease of West Nile Virus (WNV). It was found that hydroxylated derivatives impaired enzyme activity with varying degrees of effectiveness. The most active hydroxylated derivatives, namely 2-(4-hydroxybenzylidene)-1H-indene-1,3(2H)-dione (14) and 2-(3,4-dihydroxybenzylidene)-1H-indene-1,3(2H)-dione (17), were characterized as noncompetitive enzymes inhibitors, with IC50 values of 11 µmol L-1 and 3 µmol L-1, respectively. Docking and electrostatic potential surfaces investigations provided insight on the possible binding mode of the most active compounds within an allosteric site.


Asunto(s)
Inhibidores de Proteasas/síntesis química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Virus del Nilo Occidental/enzimología , Sitio Alostérico , Catálisis , Hidroxilación , Indanos/síntesis química , Indanos/farmacología , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Circonio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA