Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39066430

RESUMEN

Several technological approaches have been used to develop vaccines against COVID-19, including those based on inactivated viruses, viral vectors, and mRNA. This study aimed to monitor the maintenance of anti-SARS-CoV-2 antibodies in individuals from Brazil according to the primary vaccination regimen, as follows: BNT162b2 (group 1; 22) and ChAdOx1 (group 2; 18). Everyone received BNT162b2 in the first booster while in the second booster CoronaVac, Ad26.COV2.S, or BNT162b2. Blood samples were collected from 2021 to 2023 to analyze specific RBD (ELISA) and neutralizing antibodies (PRNT50). We observed a progressive increase in anti-RBD and neutralizing antibodies in each subsequent dose, remaining at high titers until the end of follow-up. Group 1 had higher anti-RBD antibody titers than group 2 after beginning the primary regimen, with significant differences after the 2nd and 3rd doses. Group 2 showed a more expressive increase after the first booster with BNT162B2 (heterologous booster). Group 2 also presented high levels of neutralizing antibodies against the Gamma and Delta variants until five months after the second booster. In conclusion, the circulating levels of anti-RBD and neutralizing antibodies against the two variants of SARS-CoV-2 were durable even five months after the 4th dose, suggesting that periodic booster vaccinations (homologous or heterologous) induced long-lasting immunity.

2.
Viruses ; 15(3)2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36992323

RESUMEN

Between 2016 and 2018, Brazil experienced the largest sylvatic epidemic of yellow fever virus (YFV). Despite to the magnitude and rapid spread of the epidemic, little is known about YFV dispersion. The study evaluated whether the squirrel monkey is a good model for yellow fever (YF) studies. Methods: Ten animals were infected with 1 × 106 PFU/mL of YFV, with one negative control. Blood samples were collected daily during the first 7 days and at 10, 20 and 30 days post infection (dpi) for detection of viral load and cytokines by RT-qPCR; measurements of AST, ALT, urea and creatinine were taken; IgM/IgG antibodies were detected by ELISA, and hemagglutination inhibition and neutralization tests were performed. The animals exhibited fever, flushed appearance, vomiting and petechiae, and one animal died. Viremia was detected between 1 and 10 dpi, and IgM/IgG antibodies appeared between 4 and 30 dpi. The levels of AST, ALT and urea increased. The immune responses were characterized by expression of S100 and CD11b cells; endothelial markers (VCAM-1, ICAM-1 and VLA-4), cell death and stress (Lysozyme and iNOS); and pro-inflammatory cytokines (IL-8, TNF-α, and IFN-γ) and anti-inflammatory cytokines (IL-10 and TGF-ß). The squirrel monkeys showed changes similar to those described in humans with YF, and are a good experimental model for the study of YF.


Asunto(s)
Fiebre Amarilla , Humanos , Animales , Fiebre Amarilla/epidemiología , Saimiri , Virus de la Fiebre Amarilla , Citocinas , Inmunoglobulina M , Inmunoglobulina G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA