RESUMEN
Perna perna mussels, abundant throughout the Brazilian coast, are routinely applied as bioindicators in environmental monitoring actions due to their sessile and filter-feeding characteristics. In addition, they are noteworthy for their food importance, especially for coastal populations. In this context, the aim of this study was to investigate elemental contamination in commercially marketed and highly consumed P. perna samples from the highly impacted Guanabara Bay, Rio de Janeiro, Brazil. A total of 30 mussels were sampled, and elemental concentrations (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn) were determined in adductor muscle samples by inductively coupled plasma mass spectrometry (ICP-MS). Human consumption risks were assessed by comparisons to Brazilian and international legislations. No significant differences between sex were observed for all analyzed elements. Even when analyzing only the adductor muscle, all mussel samples exceeded the Brazilian limit for Cr, while 12 samples exceeded the limit for Se. When compared to other regulatory agencies, As and Zn levels were higher than the limits set by China, New Zealand, and the USA. Estimated daily dietary intake values were not above limits imposed by the Food and Agriculture Organization of the United Nations/World Health Organization for any of the assessed elements, although it is important to note that only the adductor muscle was assessed. Therefore, continuous metal and metalloid monitoring in bivalves in the study region is suggested, as metal transport and bioavailability, especially in coastal estuaries such as Guanabara Bay, which are currently undergoing significant changes due to anthropogenic activities.
Asunto(s)
Perna , Contaminantes Químicos del Agua , Animales , Brasil , Monitoreo del Ambiente , Estuarios , Humanos , Contaminantes Químicos del Agua/análisisRESUMEN
Intestinal cryptosporidiosis is a diarrheal disease caused by protists of genus Cryptosporidium that infect a wide variety of hosts, primarily vertebrates. Due to the close contact between humans and their companion animals, especially dogs and cats, there is concern about the potential for zoonotic transmission of this enteric protozoan parasite by infected animals. This study aimed to perform a microscopic and molecular diagnosis of Cryptosporidium spp. in fecal samples from domiciled dogs and cats. One hundred and nineteen fecal samples were processed using sugar centrifugal flotation followed by molecular detection of Cryptosporidium spp. DNA using nested PCR. Subtyping of isolates positive for C. parvum was performed by sequence analysis of the 60 kDa glycoprotein gene (GP60). Cryptosporidium oocysts were detected in 7.8% (5/64) and 5.4% (3/55) of the fecal samples from dogs and cats, respectively. Cryptosporidium canis (n = 3) and C. parvum (n = 2) were the main species found in dogs, whereas C. felis (n = 3) was prevalent in cats. Subtype IIaA17G2R2 (potentially zoonotic) was identified in samples positive for C. parvum. Despite the low prevalence of Cryptosporidium observed in the domiciled dogs and cats, the presence of potentially zoonotic C. parvum in dogs evidences a public health concern. Further research is needed to better understand the epidemiology, source, and potential impacts of Cryptosporidium infection in cats and dogs.