Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 104: 109885, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31500048

RESUMEN

In the present study chitosan (Chit) nanoparticles were synthetized by the ionic gelation process, using tripolyphosphate (TPP) as crosslinking agent. The TPP/Chit nanoparticle formation was evaluated by titrations, measuring electrical conductivity (k), zeta potential (ZP), hydrodynamic diameter (Dh), viscosity (η) and heat by isothermal calorimetry (ITC). The antifungal effects were evaluated by C. albicans time-kill assays, inhibition of C. albicans initial adhesion and biofilm formation in comparison with nystatin and chitosan. Conductometric titration exhibited a typical precipitation profile, with an inflection at molar ratio of [TPP]/[Chitmon] ≈ 0.3, suggesting a 1:3.3 stoichiometry. The highest Dh, ZP and η values were shown at the beginning of titrations, due to the intramolecular repulsion between Chit-Chit. With addition of TPP, the values showed gradual reduction, with an intermediary transition at [TPP]/[Chitmon] ≈ 0.16, which was attributed to the partial breakdown of interchain crosslinking and formation of discrete charged aggregates. After this point, reaction should occur by neutralization of these assemblies, causing new reduction in values of Dh, ZP and η until [TPP]/[Chitmon] ≈ 0.3, when they reached their lowest values. ITC experiment also showed the occurrence of two bindings (K1 = 3.6 × 103 and K2 = 7.7 × 104), which were entropy driven. Biological results showed lower C. albicans viability for TPP/Chit over 24 h compared with chitosan and nystatin at MIC and 2 MIC. Moreover, TPP/Chit showed 25-50% inhibition of C. albicans adhesion and biofilm formation. The results showed that TPP/Chit nanoparticles reduced the initial adhesion and biofilm formation of C. albicans and demonstrated potential for use in a formulation for the treatment of oral candidiasis.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Quitosano/análogos & derivados , Quitosano/química , Coloides/química , Nanopartículas/química , Geles/química , Nistatina/química , Polifosfatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA