RESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in Wuhan, China, is the causative agent of the coronavirus disease 2019 (COVID-19). Since its first notification in São Paulo state (SP) on 26th February 2020, more than 22,300,000 cases and 619,000 deaths were reported in Brazil. In early pandemic, SARS-CoV-2 spread locally, however, over time, this virus was disseminated to other regions of the country. Herein, we performed genomic sequencing and phylogenetic analysis of SARS-CoV-2 using 20 clinical samples of COVID-19 confirmed cases from 9 cities of Minas Gerais state (MG), in order to evaluate the molecular properties of circulating viral strains in this locality from March to May 2020. Our analyses demonstrated the circulation of B.1 lineage isolates in the investigated locations and nucleotide substitutions were observed into the genomic regions related to important viral structures. Additionally, sequences generated in this study clustered with isolates from SP, suggesting a dissemination route between these two states. Alternatively, monophyletic groups of sequences from MG and other states or country were observed, indicating independent events of virus introduction. These results reinforce the need of genomic surveillance for understand the ongoing spread of emerging viral pathogens.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Filogenia , Brasil/epidemiología , Genoma Viral/genéticaRESUMEN
Dengue infection is the most prevalent arthropod-borne viral disease in subtropical and tropical regions, whose primary vector is Aedes aegypti mosquitoes. The mechanisms of dengue virus (DENV) pathogenesis are little understood because we have no good disease models. Only humans develop symptoms (dengue fever, DF, or dengue hemorrhagic fever, DHF) and research has been limited to studies involving patients. Samples from serum, brain, cerebellum, heart, lungs, liver, and kidneys from a 13-year-old male patient that died with hemorrhagic manifestations were sent for differential diagnosis at Adolfo Lutz, using both classical virological methods (RT-qPCR, virus isolation, ELISA, and hemagglutination inhibition test) and immunohistochemistry (IHQ). A DENV serotype 4 was detected by a DENV multiplex RT-qPCR, and the C6/36 cell supernatant was used for NGS using Minion. Lesions were described in the heart, liver, lung, and kidney with positive IHQ in endothelial cells of the brain, cerebellum, heart, and kidney, and also in hepatocytes and Kuppfer cells. A whole genome was obtained, revealing a DENV-4 genotype II, with no evidence of secondary dengue infection.