Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39212820

RESUMEN

In recent years, the escalating effects of climate change on surface water bodies have underscored the critical importance of analyzing streamflow trends for effective water resource planning and management. This study conducts a comprehensive regional investigation into the streamflow rate trends of 18 rivers across the United Kingdom (UK). An enhanced Mann-Kendall (MK) test was employed to meticulously analyze both rainfall and streamflow trends on monthly and annual scales. Additionally, the Innovative Trend Analysis (ITA) method was applied to elucidate the variability of streamflow rates, providing a more nuanced understanding of hydrological changes in response to climatic shifts. MK test reveals statistically significant positive trends in streamflow rates, particularly for rivers in south-central Scotland and northern England. Specifically, in January, rivers such as the Tay at Ballathie, Tweed at Peebles, and Teviot at Ormiston showed Z-scores above 2. Annually, similar positive trends were observed, with the Tay at Ballathie (Z = 3.42) and Nith at Friars Carse (Z = 3.35) exhibiting the highest increases in streamflow rates. The ITA method showed no relevant trends for the lowest values of streamflow, except for the Thames at Kingston, while considerable variability was observed for the highest streamflow rates, with several rivers showing positive trends and, however, some England rivers, like Bure at Ingworth, Test at Broadlands, and Trent at Colwick, showing negative trends. From this perspective, a more in-depth analysis of the extreme streamflow trends was carried out. In particular, the flood frequency of the maximum annual streamflow was assessed, based on the fitting of the Generalized Extreme Value (GEV) distribution on the annual maxima. Increasing location parameter (µ) and return period trends were observed for several rivers across the UK. In particular, the Tay at Ballathie (Scotland) showed the most marked increase, with µ that ranged from about 730 m3/s to more than 900 m3/s. At the same time, slight decreasing trends were observed for the Trent River (µ from 378 m3/s to 341 m3/s). The critical comparison of the MK test, ITA, and GEV distribution fitting revealed both agreements and discrepancies among the methods. While the analyses generally aligned in detecting significant trends in streamflow rates, notable discrepancies were observed, particularly in rivers with negligible trends. These inconsistencies highlight the complexity of hydrological responses and the limitations of individual methods. Overall, the study provides a comprehensive view of how streamflow dynamics are evolving in UK rivers, highlighting regional variations in the impact of climate change. This understanding can improve water resource management strategies by integrating diverse analytical approaches.

2.
Sci Rep ; 13(1): 7036, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120698

RESUMEN

In recent years, the growing impact of climate change on surface water bodies has made the analysis and forecasting of streamflow rates essential for proper planning and management of water resources. This study proposes a novel ensemble (or hybrid) model, based on the combination of a Deep Learning algorithm, the Nonlinear AutoRegressive network with eXogenous inputs, and two Machine Learning algorithms, Multilayer Perceptron and Random Forest, for the short-term streamflow forecasting, considering precipitation as the only exogenous input and a forecast horizon up to 7 days. A large regional study was performed, considering 18 watercourses throughout the United Kingdom, characterized by different catchment areas and flow regimes. In particular, the predictions obtained with the ensemble Machine Learning-Deep Learning model were compared with the ones achieved with simpler models based on an ensemble of both Machine Learning algorithms and on the only Deep Learning algorithm. The hybrid Machine Learning-Deep Learning model outperformed the simpler models, with values of R2 above 0.9 for several watercourses, with the greatest discrepancies for small basins, where high and non-uniform rainfall throughout the year makes the streamflow rate forecasting a challenging task. Furthermore, the hybrid Machine Learning-Deep Learning model has been shown to be less affected by reductions in performance as the forecasting horizon increases compared to the simpler models, leading to reliable predictions even for 7-day forecasts.

3.
Environ Monit Assess ; 193(6): 350, 2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34021408

RESUMEN

In the Mediterranean area, climate changes have led to long and frequent droughts with a drop in groundwater resources. An accurate prediction of the spring discharge is an essential task for the proper management of the groundwater resources and for the sustainable development of large areas of the Mediterranean basin. This study shows an unprecedented application of non-linear AutoRegressive with eXogenous inputs (NARX) neural networks to the prediction of spring flows. In particular, discharge prediction models were developed for 9 monitored springs located in the Umbria region, along the carbonate ridge of the Umbria-Marche Apennines. In the modeling, the precipitation was also considered as an exogenous input parameter. Good performances were achieved for all the springs and for both short-term and long-term predictions, passing from a lag time equal to 1 month (R2 = 0.9012-0.9842, RAE = 0.0933-0.2557) to 12 months (R2 = 0.9005-0.9838, RAE = 0.0963-0.2409). The forecasting sensitivity to changes in the temporal resolution, passing from weekly to monthly, was also assessed. The good results achieved recommend the use of the NARX network for spring discharge prediction in other areas characterized by karst aquifers.


Asunto(s)
Agua Subterránea , Manantiales Naturales , Cambio Climático , Monitoreo del Ambiente , Redes Neurales de la Computación
4.
Sci Total Environ ; 703: 135653, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31771855

RESUMEN

Wetlands are extraordinary ecosystems and important climate regulators that also contribute to reduce natural disaster risk. Unfortunately, wetlands are declining much faster than forests. The safeguarding of the wetlands also needs knowledge of the dynamics that control the water balance of these environments. Therefore, an accurate estimation of evapotranspiration in wetlands is an essential task. When adequate experimental data are available, some algorithms deriving from Artificial Intelligence research represent a promising alternative to the most common estimation techniques. In this study, starting from daily measurements of climatic variables such as net solar radiation, depth to water, wind speed, mean relative humidity, maximum temperature, minimum temperature, and mean temperature, using the Random Forest, Additive Regression of Decision Stump, Multilayer Perceptron and k-Nearest Neighbors algorithms, 24 estimation models, different in input variables, have been developed and compared. The data have been provided by USGS. They have been obtained from a measuring site in wetlands of Indian River County, Florida using the eddy-covariance technique. The accuracy of these models based on AI algorithms remains good even if the number of input variables is reduced from 7 to 3. Net solar radiation, mean temperature and mean relative humidity or wind speed measurements allow obtaining a sufficiently accurate estimation model. Random Forest and k-Nearest Neighbors provide slightly better performance than Additive Regression of Decision Stump and Multilayer Perceptron. The analyzed models show in most cases the lowest accuracy in the range 2-4 mm/day, while the highest accuracy is obtained in the ranges 0-2 mm/day and 6-8 mm/day, with the exception of the models based on the Additive Regression, which show similar levels of accuracy in the different considered sub-intervals.


Asunto(s)
Inteligencia Artificial , Monitoreo del Ambiente/métodos , Humedales , Modelos Teóricos , Redes Neurales de la Computación , Temperatura , Movimientos del Agua , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA