RESUMEN
This article describes the synthesis and inhibitory activities of a series of new 3-piperonylcoumarins, designed as inhibitors of glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from Trypanosoma cruzi. The design was based on the structures of previously identified natural products hits. The most active synthesized derivatives contain heterocyclic rings at position 6. SAR studies, performed by electronic indices methodology (EIM), clustered the molecules in different groups due to the chemical substitutions regarding the biological activity. Molecular modeling studies by docking suggested a different binding mode for the most active derivatives, when compared to natural hit chalepin. Moreover, the coumarin ring seems to act only as a spacer group.