Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 13(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34200982

RESUMEN

Combining coagulants with ballast (natural soil or modified clay) to remove cyanobacteria from the water column is a promising tool to mitigate nuisance blooms. Nevertheless, the possible effects of this technique on different toxin-producing cyanobacteria species have not been thoroughly investigated. This laboratory study evaluated the potential effects of the "Floc and Sink" technique on releasing microcystins (MC) from the precipitated biomass. A combined treatment of polyaluminium chloride (PAC) with lanthanum modified bentonite (LMB) and/or local red soil (LRS) was applied to the bloom material (mainly Dolichospermum circinalis and Microcystis aeruginosa) of a tropical reservoir. Intra and extracellular MC and biomass removal were evaluated. PAC alone was not efficient to remove the biomass, while PAC + LMB + LRS was the most efficient and removed 4.3-7.5 times more biomass than other treatments. Intracellular MC concentrations ranged between 12 and 2.180 µg L-1 independent from the biomass. PAC treatment increased extracellular MC concentrations from 3.5 to 6 times. However, when combined with ballast, extracellular MC was up to 4.2 times lower in the top of the test tubes. Nevertheless, PAC + LRS and PAC + LMB + LRS treatments showed extracellular MC concentration eight times higher than controls in the bottom. Our results showed that Floc and Sink appears to be more promising in removing cyanobacteria and extracellular MC from the water column than a sole coagulant (PAC).


Asunto(s)
Hidróxido de Aluminio/química , Bentonita/química , Cianobacterias , Lantano/química , Microcistinas/química , Suelo/química , Contaminantes del Agua/química , Purificación del Agua/métodos , Clorofila A/análisis , Floculación , Abastecimiento de Agua
2.
Environ Sci Pollut Res Int ; 27(28): 35459-35473, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32592062

RESUMEN

Raphidiopsis raciborskii is being considered an expanding, invasive species all over the world. It is a potentially toxin producer cyanobacterium and form blooms specially in (sub)tropical lakes, causing concern to public health. Thus, controlling such phenomena are of vital importance. To test the hypothesis that a tropical clone of Daphnia laevis is able to reduce the biomass of R. raciborskii, we performed a mesocosm experiment simulating a bloom of this cyanobacterium in field conditions and exposing it to ecologically relevant densities of daphniids. In addition, we tested the hypothesis that omnivorous fish would be able to exert a top-down effect on Daphnia, decreasing the effectiveness of this control. We used treatments with (10 and 20 Daphnia L-1) or without Daphnia and fish (3 per mesocosm). Daphnia was able to significantly reduce the biomass of R. raciborskii only at the highest density tested. Fish had low effect on Daphnia biomass, but it is suggested that nutrient recycling by fish might have contributed to the higher R. raciborskii biomass in fish treatments. This is the first evidence of Daphnia control over saxitoxin-producing cyanobacteria in a tropical ecosystem.


Asunto(s)
Cianobacterias , Cylindrospermopsis , Animales , Daphnia , Ecosistema , Lagos
3.
PLoS One ; 12(6): e0178976, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28598977

RESUMEN

Cyanobacteria blooms are a risk to environmental health and public safety due to the potent toxins certain cyanobacteria can produce. These nuisance organisms can be removed from water bodies by biomass flocculation and sedimentation. Here, we studied the efficacy of combinations of a low dose coagulant (poly-aluminium chloride-PAC-or chitosan) with different ballast compounds (red soil, bauxite, gravel, aluminium modified zeolite and lanthanum modified bentonite) to remove cyanobacterial biomass from water collected in Funil Reservoir (Brazil). We tested the effect of different cyanobacterial biomass concentrations on removal efficiency. We also examined if zeta potential was altered by treatments. Addition of low doses of PAC and chitosan (1-8 mg Al L-1) to the cyanobacterial suspensions caused flock formation, but did not settle the cyanobacteria. When those low dose coagulants were combined with ballast, effective settling in a dose-dependent way up to 99.7% removal of the flocks could be achieved without any effect on the zeta potential and thus without potential membrane damage. Removal efficacy was influenced by the cyanobacterial biomass and at higher biomass more ballast was needed to achieve good removal. The combined coagulant-ballast technique provides a promising alternative to algaecides in lakes, ponds and reservoirs.


Asunto(s)
Coagulantes/farmacología , Cianobacterias/efectos de los fármacos , Cianobacterias/crecimiento & desarrollo , Compuestos de Aluminio/farmacología , Toxinas Bacterianas/biosíntesis , Biomasa , Brasil , Quitosano/farmacología , Clorofila/biosíntesis , Clorofila A , Cianobacterias/metabolismo , Toxinas de Cianobacterias , Toxinas Marinas/biosíntesis , Microcistinas/biosíntesis , Suelo/química
4.
Harmful Algae ; 66: 1-12, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28602248

RESUMEN

Removal of cyanobacteria from the water column using a coagulant and a ballast compound is a promising technique to mitigate nuisance. As coagulant the organic, biodegradable polymer chitosan has been promoted. Results in this study show that elevated pH, as may be common during cyanobacterial blooms, as well as high alkalinity may hamper the coagulation of chitosan and thus impair its ability to effectively remove positively buoyant cyanobacteria from the water column. The underlying mechanism is likely a shielding of the protonated groups by anions. Inasmuch as there are many chitosan formulations, thorough testing of each chitosan prior to its application is essential. Results obtained in glass tubes were similar to those from standard jar tests demonstrating that glass tube tests can be used for testing effects of coagulants and ballasts in cyanobacteria removal whilst allowing far more replicates. There was no relation between zeta potential and precipitated cyanobacteria. Given the well-known antibacterial activity of chitosan and recent findings of anti-cyanobacterial effects, pre-application tests are needed to decipher if chitosan may cause cell leakage of cyanotoxins. Efficiency- and side-effect testing are crucial for water managers to determine if the selected approach can be used in tailor-made interventions to control cyanobacterial blooms and to mitigate eutrophication.


Asunto(s)
Quitosano/química , Restauración y Remediación Ambiental/métodos , Floraciones de Algas Nocivas , Lagos/microbiología , Microcystis/efectos de los fármacos , Contaminación Química del Agua/prevención & control , Brasil , Floculación
5.
Microb Ecol ; 73(3): 505-520, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27900461

RESUMEN

Element cycling in aquatic systems is driven chiefly by planktonic processes, and the structure of the planktonic food web determines the efficiency of carbon transfer through trophic levels. However, few studies have comprehensively evaluated all planktonic food-web components in tropical regions. The aim of this study was to unravel the top-down controls (metazooplankton community structure), bottom-up controls (resource availability), and hydrologic (water residence time) and physical (temperature) variables that affect different components of the microbial food web (MFW) carbon stock in tropical reservoirs, through structural equation models (SEM). We conducted a field study in four deep Brazilian reservoirs (Balbina, Tucuruí, Três Marias, and Funil) with different trophic states (oligo-, meso-, and eutrophic). We found evidence of a high contribution of the MFW (up to 50% of total planktonic carbon), especially in the less-eutrophic reservoirs (Balbina and Tucuruí). Bottom-up and top-down effects assessed through SEM indicated negative interactions between soluble reactive phosphorus and phototrophic picoplankton (PPP), dissolved inorganic nitrogen, and heterotrophic nanoflagellates (HNF). Copepods positively affected ciliates, and cladocerans positively affected heterotrophic bacteria (HB) and PPP. Higher copepod/cladoceran ratios and an indirect positive effect of copepods on HB might strengthen HB-HNF coupling. We also found low values for the degree of uncoupling (D) and a low HNF/HB ratio compared with literature data (mostly from temperate regions). This study demonstrates the importance of evaluating the whole size spectrum (including microbial compartments) of the different planktonic compartments, in order to capture the complex carbon dynamics of tropical aquatic ecosystems.


Asunto(s)
Bacterias/metabolismo , Cilióforos/metabolismo , Cladóceros/metabolismo , Copépodos/metabolismo , Cadena Alimentaria , Plancton/metabolismo , Animales , Brasil , Ecosistema , Eutrofización , Agua Dulce/microbiología , Nitrógeno/metabolismo , Temperatura , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA