RESUMEN
Doxorubicin (DOX) is a chemotherapy agent widely used in clinical practice, and it is very efficient in tumor suppression, but the use of DOX is limited by a strong association with the development of severe muscle atrophy and cardiotoxicity effects. Reversion or neutralization of the muscular atrophy can lead to a better prognosis. Recent studies have proposed that the negative effect of DOX on skeletal muscle is linked to its inhibition of AMP-activated protein kinase (AMPk), a key mediator of cellular metabolism. On the basis of this, our goal was to evaluate if aerobic exercise or metformin treatment, activators of AMPk, would be able to attenuate the deleterious effects on skeletal muscle induced by the DOX treatment. C57BL6 mice received either saline (control) or DOX (2.5 mg/kg body weight) intraperitoneally, twice a week. The animals on DOX were further divided into groups that received adjuvant treatment in the form of moderate aerobic physical exercise (DOX+T) or metformin gavage (300 mg/body weight/day). Body weight, metabolism, distance run, muscle fiber cross-sectional area (CSA), and protein synthesis and degradation were assessed. We demonstrated that aerobic training, but not metformin, associated with DOX increased the maximal aerobic capacity without changing muscle mass or fiber CSA, rescuing the muscle fatigue observed with DOX treatment alone. This improvement was associated with AMPk activation, thus surpassing the negative effects of DOX on muscle performance and bioenergetics. In conclusion, aerobic exercise increases AMPk activation and improved the skeletal muscle function, reducing the side effects of DOX.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Doxorrubicina/farmacología , Metformina/farmacología , Músculo Esquelético/fisiopatología , Condicionamiento Físico Animal , Tejido Adiposo/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacosRESUMEN
The production of ethanol from lignocellulosic biomass is referred as a second generation biofuel, whose processing is one of the most promising technologies under development. There are few available studies on the use of enzymes produced by fungi as active for the biodegradation of lignocellulosic biomass. However, the manganese peroxidase (MnP) enzyme presents high potential to degrade lignin and the basidiomycetes are the major producers of this oxidase. Thus, this study aimed at evaluating the ability of fungi Lentinula edodes and Lentinula boryana to produce this enzyme when cultivated in submerged fermentation system (SS) and also in solid-state fermentation system (SSF) containing Eucalyptus benthamii sawdust with or without corn cob meal. In the SS the greatest MnP expression occurred on the 25th day, being of 70 UI.L-1 for L. boryana and of 20 UI.L-1 for L. edodes. In the SSF, the best results were obtained on the 10th day for L. edodes, while for L. boryana it happened between the 20th and the 25th days, despite both species presented values close to 110 UI.L-1. Therefore, the results indicated that the studied fungi express the enzyme of interest and that its production is enhanced when cultivated in solid system.