Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemistryOpen ; : e202400166, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254258

RESUMEN

In this study, the effect of halide anions on the selectivity of the CO2 reduction reaction to CO was investigated in choline-based ethylene glycol solutions containing different halides (ChCl : EG, ChBr : EG, ChI : EG). The CO2RR was studied using silver (Ag) and gold (Au) electrodes in a compact H-cell. Our findings reveal that chloride effectively suppresses the hydrogen evolution reaction and enhances the selectivity of carbon monoxide production on both Ag and Au electrodes, with relatively high selectivity values of 84 % and 62 %, respectively. Additionally, the effect of varying ethylene glycol content in the choline chloride-containing electrolyte (ChCl : EG 1 : X, X=2, 3, 4) was investigated to improve the current density during CO2RR on the Ag electrode. We observed that a mole ratio of 1 : 4 exhibited the highest current density with a comparable faradaic efficiency toward CO. Notably, an evident surface reconstruction process took place on the Ag surface in the presence of Cl- ions, whereas on Au, this phenomenon was less pronounced. Overall, this study provides new insights into anion-induced surface restructuring of Ag and Au electrodes during CO2RR, and its consequences on the reduction performance on such surfaces in non-aqueous electrolytes.

2.
J Phys Chem C Nanomater Interfaces ; 127(27): 12857-12866, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37465054

RESUMEN

Aqueous electrolytes used in CO2 electroreduction typically have a CO2 solubility of around 34 mM under ambient conditions, contributing to mass transfer limitations in the system. Non-aqueous electrolytes exhibit higher CO2 solubility (by 5-8-fold) and also provide possibilities to suppress the undesired hydrogen evolution reaction (HER). On the other hand, a proton donor is needed to produce many of the products commonly obtained with aqueous electrolytes. This work investigates the electrochemical CO2 reduction performance of copper in non-aqueous electrolytes based on dimethylformamide (DMF), n-methyl-2-pyrrolidone (NMP), and acetonitrile (ACN). The main objective is to analyze whether non-aqueous electrolytes are a viable alternative to aqueous electrolytes for hydrocarbon production. Additionally, the effects of aqueous/non-aqueous anolytes, membrane, and the selection of a potential window on the electrochemical CO2 reduction performance are addressed in this study. Experiments with pure DMF and NMP mainly produced oxalate with a faradaic efficiency (FE) reaching >80%; however, pure ACN mainly produced hydrogen and formate due to the presence of more residual water in the system. Addition of 5% (v/v) water to the non-aqueous electrolytes resulted in increased HER and formate production with negligible hydrocarbon production. Hence, we conclude that aqueous electrolytes remain a better choice for the production of hydrocarbons and alcohols on a copper electrode, while organic electrolytes based on DMF and NMP can be used to obtain a high selectivity toward oxalate and formate.

3.
ChemSusChem ; 16(9): e202202188, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36718877

RESUMEN

N-doped carbon materials can be efficient and cost-effective catalysts for the electrochemical CO2 reduction reaction (CO2 RR). Activators are often used in the synthesis process to increase the specific surface area and porosity of these carbon materials. However, owing to the diversity of activators and the differences in physicochemical properties that these activators induce, the influence of activators used for the synthesis of N-doped carbon catalysts on their electrochemical performance is unclear. In this study, a series of bagasse-derived N-doped carbon catalysts is prepared with the assistance of different activators to understand the correlation between activators, physicochemical properties, and electrocatalytic performance for the CO2 RR. The properties of N-doped carbon catalysts, such as N-doping content, microstructure, and degree of graphitization, are found to be highly dependent on the type of activator applied in the synthesis procedure. Moreover, the overall CO2 RR performance of the synthesized electrocatalysts is not determined only by the N-doping level and the configuration of the N-dopant, but rather by the overall surface chemistry, where the porosity and the degree of graphitization are jointly responsible for significant differences in CO2 RR performance.

4.
Ind Eng Chem Res ; 61(40): 14837-14846, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36254199

RESUMEN

We performed H-cell and flow cell experiments to study the electrochemical reduction of CO2 to oxalic acid (OA) on a lead (Pb) cathode in various nonaqueous solvents. The effects of anolyte, catholyte, supporting electrolyte, temperature, water content, and cathode potential on the Faraday efficiency (FE), current density (CD), and product concentration were investigated. We show that a high FE for OA can be achieved (up to 90%) at a cathode potential of -2.5 V vs Ag/AgCl but at relatively low CDs (10-20 mA/cm2). The FE of OA decreases significantly with increasing water content of the catholyte, which causes byproduct formation (e.g., formate, glycolic acid, and glyoxylic acid). A process design and techno-economic evaluation of the electrochemical conversion of CO2 to OA is presented. The results show that the electrochemical route for OA production can compete with the fossil-fuel based route for the base case scenario (CD of 100 mA/cm2, OA FE of 80%, cell voltage of 4 V, electrolyzer CAPEX of $20000/m2, electricity price of $30/MWh, and OA price of $1000/ton). A sensitivity analysis shows that the market price of OA has a huge influence on the economics. A market price of at least $700/ton is required to have a positive net present value and a payback time of less than 10 years. The performance and economics of the process can be further improved by increasing the CD and FE of OA by using gas diffusion electrodes and eliminating water from the cathode, lowering the cell voltage by increasing the conductivity of the electrolyte solutions, and developing better OA separation methods.

5.
J Phys Chem C Nanomater Interfaces ; 126(29): 11927-11936, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35928239

RESUMEN

The electrochemical CO2 reduction reaction (CO2RR) is important for a sustainable future. Key insights into the reaction pathways have been obtained by density functional theory (DFT) analysis, but so far, DFT has been unable to give an overall understanding of selectivity trends without important caveats. We show that an unconsidered parameter in DFT models of electrocatalysts-the surface coverage of reacting species-is crucial for understanding the CO2RR selectivities for different surfaces. Surface coverage is a parameter that must be assumed in most DFT studies of CO2RR electrocatalysts, but so far, only the coverage of nonreacting adsorbates has been treated. Explicitly treating the surface coverage of reacting adsorbates allows for an investigation that can more closely mimic operating conditions. Furthermore, and of more immediate importance, the use of surface coverage-dependent adsorption energies allows for the extraction of ratios of adsorption energies of CO2RR intermediates (COOHads and HCOOads) that are shown to be predictive of selectivity and are not susceptible to systematic errors. This approach allows for categorization of the selectivity of several monometallic catalysts (Pt, Pd, Au, Ag, Zn, Cu, Rh, W, Pb, Sn, In, Cd, and Tl), even problematic ones such as Ag or Zn, and does so by only considering the adsorption energies of known intermediates. The selectivity of the further reduction of COOHads can now be explained by a preference for Tafel or Heyrovsky reactions, recontextualizing the nature of selectivity of some catalysts. In summary, this work resolves differences between DFT and experimental studies of the CO2RR and underlines the importance of surface coverage.

6.
Ind Eng Chem Res ; 60(49): 17862-17880, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34937989

RESUMEN

Direct electrochemical reduction of CO2 to C2 products such as ethylene is more efficient in alkaline media, but it suffers from parasitic loss of reactants due to (bi)carbonate formation. A two-step process where the CO2 is first electrochemically reduced to CO and subsequently converted to desired C2 products has the potential to overcome the limitations posed by direct CO2 electroreduction. In this study, we investigated the technical and economic feasibility of the direct and indirect CO2 conversion routes to C2 products. For the indirect route, CO2 to CO conversion in a high temperature solid oxide electrolysis cell (SOEC) or a low temperature electrolyzer has been considered. The product distribution, conversion, selectivities, current densities, and cell potentials are different for both CO2 conversion routes, which affects the downstream processing and the economics. A detailed process design and techno-economic analysis of both CO2 conversion pathways are presented, which includes CO2 capture, CO2 (and CO) conversion, CO2 (and CO) recycling, and product separation. Our economic analysis shows that both conversion routes are not profitable under the base case scenario, but the economics can be improved significantly by reducing the cell voltage, the capital cost of the electrolyzers, and the electricity price. For both routes, a cell voltage of 2.5 V, a capital cost of $10,000/m2, and an electricity price of <$20/MWh will yield a positive net present value and payback times of less than 15 years. Overall, the high temperature (SOEC-based) two-step conversion process has a greater potential for scale-up than the direct electrochemical conversion route. Strategies for integrating the electrochemical CO2/CO conversion process into the existing gas and oil infrastructure are outlined. Current barriers for industrialization of CO2 electrolyzers and possible solutions are discussed as well.

7.
Ind Eng Chem Res ; 60(15): 5588-5599, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-34054211

RESUMEN

Formic acid (FA) is an interesting hydrogen (H2) and carbon monoxide (CO) carrier that can be produced by the electrochemical reduction of carbon dioxide (CO2) using renewable energy. The separation of FA from water is challenging due to the strong (cross)association of the components and the presence of a high boiling azeotrope. For the separation of dilute FA solutions, liquid-liquid extraction is preferred over conventional distillation because distilling large amounts of water is very energy-intensive. In this study, we use 2-methyltetrahydrofuran (2-MTHF) to extract FA from the CO2 electrolysis process, which typically contains <20 wt % of FA. Vapor-liquid equilibrium (VLE) data of the binary system 2-MTHF-FA and liquid-liquid equilibrium (LLE) data of the ternary system 2-MTHF-FA-water are obtained. Continuous extraction and distillation experiments are performed to test the extraction power and recovery of 2-MTHF from the extract. The VLE and LLE data are used to design a hybrid extraction and distillation process to produce a commercial grade product (85 wt % of FA). A detailed economic analysis of this hybrid extraction-distillation process is presented and compared with the existing FA separation methods. It is shown that 2-MTHF is a cost-effective solvent for FA extraction from dilute streams (<20 wt % FA).

8.
Polymers (Basel) ; 12(4)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326362

RESUMEN

Biomass pellets provide a pivotal opportunity in promising energy transition scenarios as a renewable source of energy. A large share of the current utilization of pellets is facilitated by intensive global trade operations. Considering the long distance between the production site and the end-user locations, pellets may face fluctuating storage conditions, resulting in their physical and chemical degradation. We tested the effect of different storage conditions, from freezing temperatures (-19 °C) to high temperature (40 °C) and humidity conditions (85% relative humidity), on the physicochemical properties of untreated and torrefied biomass pellets. Moreover, the effect of sudden changes in the storage conditions on pellet properties was studied by moving the pellets from the freezing to the high temperature and relative humidity conditions and vice versa. The results show that, although storage at one controlled temperature and RH may degrade the pellets, a change in the temperature and relative humidity results in higher degradation in terms of higher moisture uptake and lower mechanical strength.

9.
Ind Eng Chem Res ; 58(5): 1834-1847, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30774193

RESUMEN

A high pressure semicontinuous batch electrolyzer is used to convert CO2 to formic acid/formate on a tin-based cathode using bipolar membranes (BPMs) and cation exchange membranes (CEMs). The effects of CO2 pressure up to 50 bar, electrolyte concentration, flow rate, cell potential, and the two types of membranes on the current density (CD) and Faraday efficiency (FE) for formic acid/formate are investigated. Increasing the CO2 pressure yields a high FE up to 90% at a cell potential of 3.5 V and a CD of ∼30 mA/cm2. The FE decreases significantly at higher cell potentials and current densities, and lower pressures. Up to 2 wt % formate was produced at a cell potential of 4 V, a CD of ∼100 mA/cm2, and a FE of 65%. The advantages and disadvantages of using BPMs and CEMs in electrochemical cells for CO2 conversion to formic acid/formate are discussed.

10.
Angew Chem Int Ed Engl ; 58(5): 1345-1349, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30444950

RESUMEN

Ag is a promising catalyst for the production of carbon monoxide (CO) via the electrochemical reduction of carbon dioxide (CO2 ER). Herein, we study the role of the formate (HCOO- ) intermediate *OCHO, aiming to resolve the discrepancy between the theoretical understanding and experimental performance of Ag. We show that the first coupled proton-electron transfer (CPET) step in the CO pathway competes with the Volmer step for formation of *H, whereas this Volmer step is a prerequisite for the formation of *OCHO. We show that *OCHO should form readily on the Ag surface owing to solvation and favorable binding strength. In situ surface-enhanced Raman spectroscopy (SERS) experiments give preliminary evidence of the presence of O-bound bidentate species on polycrystalline Ag during CO2 ER which we attribute to *OCHO. Lateral adsorbate interactions in the presence of *OCHO have a significant influence on the surface coverage of *H, resulting in the inhibition of HCOO- and H2 production and a higher selectivity towards CO.

11.
Sci Rep ; 6: 22159, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26922901

RESUMEN

Several Mousterian sites in France have yielded large numbers of small black blocs. The usual interpretation is that these 'manganese oxides' were collected for their colouring properties and used in body decoration, potentially for symbolic expression. Neanderthals habitually used fire and if they needed black material for decoration, soot and charcoal were readily available, whereas obtaining manganese oxides would have incurred considerably higher costs. Compositional analyses lead us to infer that late Neanderthals at Pech-de-l'Azé I were deliberately selecting manganese dioxide. Combustion experiments and thermo-gravimetric measurements demonstrate that manganese dioxide reduces wood's auto-ignition temperature and substantially increases the rate of char combustion, leading us to conclude that the most beneficial use for manganese dioxide was in fire-making. With archaeological evidence for fire places and the conversion of the manganese dioxide to powder, we argue that Neanderthals at Pech-de-l'Azé I used manganese dioxide in fire-making and produced fire on demand.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA