RESUMEN
Recent discoveries have shown that enteric glial cells play an important role in different neurodegenerative disorders, such as Parkinson's disease (PD), which is characterized by motor dysfunctions caused by the progressive loss of dopaminergic neurons in the substance nigra pars compacta and non-motor symptoms including gastrointestinal dysfunction. In this study, we investigated the modulatory effects of the flavonoid rutin on the behavior and myenteric plexuses in a PD animal model and the response of enteric glia. Adult male Wistar rats were submitted to stereotaxic injection with 6-hydroxydopamine or saline, and they were untreated or treated with rutin (10 mg/kg) for 14 days. The ileum was collected to analyze tissue reactivity and immunohistochemistry for neurons (HuC/HuD) and enteric glial cells (S100ß) in the myenteric plexuses. Behavioral tests demonstrated that treatment with rutin improved the motor capacity of parkinsonian animals and improved intestinal transit without interfering with the cell population; rutin treatment modulated the reactivity of the ileal musculature through muscarinic activation, reducing relaxation through the signaling pathway of nitric oxide donors, and increased the longitudinal contractility of the colon musculature in parkinsonian animals. Rutin revealed modulatory activities on the myenteric plexus, bringing relevant answers regarding the effect of the flavonoid in this system and the potential application of PD adjuvant treatment.
Asunto(s)
Plexo Mientérico , Enfermedad de Parkinson , Masculino , Ratas , Animales , Ratas Wistar , Flavonoides/farmacología , Flavonoides/uso terapéutico , Rutina/farmacología , Rutina/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Modelos Animales de Enfermedad , Neuronas DopaminérgicasRESUMEN
Studies have suggested aminochrome as an endogenous neurotoxin responsible for the dopaminergic neuron degeneration in Parkinson's disease (PD). However, neuroinflammation, an important alteration in PD pathogenesis, has been strictly induced in vitro by aminochrome. The aim of this study was to characterize the neuroinflammation induced in vivo by aminochrome. Wistar rats (male, 250-270 g) received a unilateral single dose by stereotaxic injection of saline into three sites in the striatum in the negative control group, or 32 nmol 6-hydroxydopamine (6-OHDA) in the positive control, or 6 nmol aminochrome. After 14 days, histological and molecular analyses were performed. We observed by immunofluorescence that aminochrome, as well as 6-OHDA, induced an increase in the number of Iba-1+ cells and in the number of activated (Iba-1+/ CD68+) microglia. An increase in the number of S100b+ cells and in the GFAP expression were also evidenced in the striatum and the SNpc of animals from aminochrome and positive control group. Dopaminergic neuronal loss was marked by reduction of TH+ cells and confirmed with reduction in the number of Nissl-stained neurons in the SNpc of rats from aminochrome and positive control groups. In addition, we observed by qPCR that aminocrhome induced an increase in the levels of IL-1ß, TNF-α, NLRP3, CCL5 and CCR2 mRNA in the SNpc. This work provides the first evidence of microgliosis, astrogliosis and neuroinflammation induced by aminochrome in an in vivo model. Since aminochrome is an endogenous molecule derived from dopamine oxidation present in the targeted neurons in PD, these results reinforce the potential of aminochrome as a useful preclinical model to find anti-inflammatory and neuroprotective drugs for PD. Aminochrome induced dopaminergic neuronal loss, microglial activation, astroglial activation and neuroinflammation marked by an increase in NLRP3, IL1ß, TNF-α, CCL2, CCL5 and CCR2.
Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Masculino , Animales , Enfermedad de Parkinson/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Ratas Wistar , Oxidopamina , Enfermedades Neuroinflamatorias , Dopamina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuronas Dopaminérgicas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Modelos Animales de Enfermedad , Microglía/metabolismoRESUMEN
Astrocytes preserve the brain microenvironment homeostasis in order to protect other brain cells, mainly neurons, against damages. Glial cells have specific functions that are important in the context of neuronal survival in different models of central nervous system (CNS) diseases. Microglia are among these cells, secreting several molecules that can modulate astrocyte functions. Although 1,2-dihydroxybenzene (catechol) is a neurotoxic monoaromatic compound of exogenous origin, several endogenous molecules also present the catechol group. This study compared two methods to obtain astrocyte-enriched cultures from newborn Wistar rats of both sexes. In the first technique (P1), microglial cells began to be removed early 48 h after primary mixed glial cultures were plated. In the second one (P2), microglial cells were late removed 7 to 10 days after plating. Both cultures were exposed to catechol for 72 h. Catechol was more cytotoxic to P1 cultures than to P2, decreasing cellularity and changing the cell morphology. Microglial-conditioned medium (MCM) protected P1 cultures and inhibited the catechol autoxidation. P2 cultures, as well as P1 in the presence of 20% MCM, presented long, dense, and fibrillary processes positive for glial fibrillary acidic protein, which retracted the cytoplasm when exposed to catechol. The Ngf and Il1beta transcription increased in P1, meanwhile astrocytes expressed more Il10 in P2. Catechol decreased Bdnf and Il10 in P2 cultures, and it decreased the expression of Il1beta in both conditions. A prolonged contact with microglia before isolation of astrocyte-enriched cultures modifies astrocyte functions and morphology, protecting these cells against catechol-induced cytotoxicity.
Asunto(s)
Astrocitos , Microglía , Animales , Astrocitos/metabolismo , Catecoles/toxicidad , Células Cultivadas , Interleucina-10/metabolismo , Microglía/metabolismo , Ratas , Ratas WistarRESUMEN
Neospora caninum is a parasite that infects many animal species and has tropism for various tissues, particularly the nervous system, where it generally remains in cysts. Under N. caninum infection, glial cells activate immune responses by a Th2 profile, suggesting an immunologically privileged environment that controls parasite proliferation, with neuronal preservation. In this study, we investigated the role of soluble neurotrophic factors released by glial cells on neuronal integrity during N. caninum infection in vitro. Primary cultures of rat glial cells enriched in astrocytes were infected with N. caninum tachyzoites (1:1) for 24 hr. Neuron-glia co-cultures were cultured for 24 hr with conditioned medium from glial cells infected with N. caninum (CMNc) and from uninfected cultures (control). Cell viability was determined through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test; astrocyte morphology and reactivity were determined through immunocytochemistry for glial fibrillar acid protein (GFAP) and the integrity of neurons through immunocytochemistry for ß-tubulin III. Expression of inflammatory cytokines and neurotrophic factors was determined through RT-qPCR. The MTT test demonstrated that 1:1 was the best parasite/host cell ratio, considering that it was enough to increase metabolism of glial cells when compared with control cultures and was not cytotoxic after 48 hr infection. N. caninum-infected glial cultures responded with astrogliosis characterized by an increase in GFAP expression and increase in IL-10 (2-fold), BDNF (1.6-fold), and NGF (1.7-fold) gene expression. In the neuron/glia co-cultures, it was observed that treatment with CMNc induced neuritis outgrowth without toxicity. Together, these results show that modulatory mechanisms by neurotrophic factors derived from glial cells, primarily astrocytes during the N. caninum infection, can favor neuroprotection.