Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biometeorol ; 68(8): 1603-1614, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38684525

RESUMEN

There is an urgent need for strategies to reduce the negative impacts of a warming climate on human health. Cooling urban neighborhoods by planting trees and vegetation and increasing albedo of roofs, pavements, and walls can mitigate urban heat. We used synoptic climatology to examine how different tree cover and albedo scenarios would affect heat-related morbidity in Los Angeles, CA, USA, as measured by emergency room (ER) visits. We classified daily meteorological data for historical summer heat events into discrete air mass types. We analyzed those classifications against historical ER visit data to determine both heat-related and excess morbidity. We used the Weather Research and Forecasting model to examine the impacts of varied tree cover and albedo scenarios on meteorological outcomes and used these results with standardized morbidity data algorithms to estimate potential reductions in ER visits. We tested three urban modification scenarios of low, medium, and high increases of tree cover and albedo and compared these against baseline conditions. We found that avoiding 25% to 50% of ER visits during heat events would be a common outcome if the urban environment had more tree cover and higher albedo, with the greatest benefits occurring under heat events that are moderate and those that are particularly hot and dry. We conducted these analyses at the county level and compared results to a heat-vulnerable, working-class Los Angeles community with a high concentration of people of color, and found that reductions in the rate of ER visits would be even greater at the community level compared to the county.


Asunto(s)
Servicio de Urgencia en Hospital , Calor , Árboles , Los Angeles , Humanos , Servicio de Urgencia en Hospital/estadística & datos numéricos , Modelos Teóricos
2.
Int J Biometeorol ; 66(5): 911-925, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35325269

RESUMEN

There is a pressing need for strategies to prevent the heat-health impacts of climate change. Cooling urban areas through adding trees and vegetation and increasing solar reflectance of roofs and pavements with higher albedo surface materials are recommended strategies for mitigating the urban heat island. We quantified how various tree cover and albedo scenarios would impact heat-related mortality, temperature, humidity, and oppressive air masses in Los Angeles, California, and quantified the number of years that climate change-induced warming could be delayed in Los Angeles if interventions were implemented. Using synoptic climatology, we used meteorological data for historical summer heat waves, classifying days into discrete air mass types. We analyzed those data against historical mortality data to determine excess heat-related mortality. We then used the Weather Research and Forecasting model to explore the effects that tree cover and albedo scenarios would have, correlating the resultant meteorological data with standardized mortality data algorithms to quantify potential reductions in mortality. We found that roughly one in four lives currently lost during heat waves could be saved. We also found that climate change-induced warming could be delayed approximately 40-70 years under business-as-usual and moderate mitigation scenarios, respectively.


Asunto(s)
Calor , Árboles , Ciudades , Los Angeles/epidemiología , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA