RESUMEN
Two new series of hitherto unknown dipeptides, containing an electrophilic nitrile or a non-electrophilic 2-amino-1,3,4-oxadiazole moiety were synthesized and evaluated in vitro as Cathepsin K (Cat K) inhibitors. From 14 compounds obtained, the oxadiazole derivatives 10a, 10b, 10e, and 10g acted as enzymatic competitive inhibitors with Ki values between 2.13 and 7.33 µM. Molecular docking calculations were carried out and demonstrated that all inhibitors performed hydrogen bonds with residues from the enzyme active site, such as Asn18. The best inhibitors (10a, 10b, 10g) could also perform these bonds with Cys25, and 10a showed the most stabilizing interaction energy (-134.36 kcal mol-1) with the active cavity. For the first time, derivatives based in 2-amino-1,3,4-oxadiazole scaffolds were evaluated, and the results suggested that this core displays a remarkable potential as a building block for Cat K inhibitors.
Asunto(s)
Catepsina K/antagonistas & inhibidores , Dipéptidos/farmacología , Oxadiazoles/farmacología , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Dipéptidos/síntesis química , Dipéptidos/química , Diseño de Fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Modelos Moleculares , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Unión Proteica , Conformación Proteica , Relación Estructura-ActividadRESUMEN
Visceral leishmaniasis (VL) is a chronic and systemic disease; if untreated, it can cause death in a large number of cases. The therapy is based on the use of antimonials, which have been used for over 50 years. However, cases of resistance have been reported in some countries. In this context, miltefosine (MIL) was introduced to treat antimonial unresponsive cases. Nonetheless, in recent years MIL unresponsive and relapse cases of VL have increasingly been reported. In the current study, the therapeutic potential of compound 5-(4-(3-methanesulfonatepropyl)-1H-1,2,3-triazol-1-yl)dodecyl methanesulfonate (C11), an MIL derivative, was assessed in an experimental VL hamster model. For this purpose, golden hamsters (Mesocricetus auratus) were infected with Leishmania (L.) infantum chagasi and treated daily for 10 days with C11 and MIL administered orally; in addition, Glucantime (GLU), peritoneal route, were administered at 15, 10, 50 mg/kg body weight/day, respectively. Twenty four hours after the end of treatment the animals were euthanatized; and the specimens were collected to evaluate the relative mRNA expression of cytokines IFN-γ, TNF-α, IL-17, TGF-ß, IL-4 and IL-10 in fragments of the spleen and liver; moreover, the parasitism in these organs was evaluated as well as the main histopathological alterations. The C11-treated animals showed greater expression of IL-17 and TNF-α cytokines and reduced expression of IL-10 in the spleen in comparison to the infected untreated group (UTG) (p <0.05). The C11 and GLU groups showed a significant reduction in the IgG levels in comparison to the UTG group (p <0.05). Moreover, the C11-treated animals had fewer parasites in the spleen than the UTG animals (reduction of 95.9%), as well as a greater preservation of white pulp architecture in the spleen than the UTG, GLU and MIL groups (p <0.05). For the liver, the animals from the C11 and MIL groups showed a significant increase in TNF-α relative expression in comparison to the UTG animals, which would explain the increase in the number of granulomas and the reduction in the parasitic load (p <0.05). Combined, these findings indicate that C11 is an interesting compound that should be considered for the development of new drugs against VL, mainly due to its leishmanicidal effect and immunostimulating action.
Asunto(s)
Antiprotozoarios/uso terapéutico , Leishmaniasis Visceral/tratamiento farmacológico , Fosforilcolina/análogos & derivados , Animales , Antiprotozoarios/farmacología , Cricetinae , Citocinas/genética , Leishmania infantum , Leishmaniasis Visceral/inmunología , Masculino , Antimoniato de Meglumina/uso terapéutico , Mesocricetus , Fosforilcolina/uso terapéutico , Bazo/parasitologíaRESUMEN
We report a sequential C-H iodination/organoyl-thiolation of naphthoquinones and their relevant trypanocidal activity. Under a combination of AgSR with a copper source, sulfur-substituted benzenoid quinones were prepared in high yields (generally >90%). This provides an efficient and general method for preparing A-ring modified naphthoquinoidal systems, recognized as a challenge in quinone chemistry.
RESUMEN
Fluorescent quinone-based BODIPY hybrids were synthesised and characterised by NMR analysis and mass spectrometry. We measured their cytotoxic activity against cancer and normal cell lines, performed mechanistic studies by lipid peroxidation and determination of reduced (GSH) and oxidized (GSSG) glutathione, and imaged their subcellular localisation by confocal microscopy. Cell imaging experiments indicated that nor-ß-lapachone-based BODIPY derivatives might preferentially localise in the lysosomes of cancer cells. These results assert the potential of hybrid quinone-BODIPY derivatives as promising prototypes in the search of new potent lapachone antitumor drugs.
Asunto(s)
Antineoplásicos/farmacología , Benzoquinonas/farmacología , Compuestos de Boro/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzoquinonas/síntesis química , Benzoquinonas/química , Compuestos de Boro/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-ActividadRESUMEN
For the first time, a fluorescent lapachone-based BODIPY was synthesised and characterised by NMR and mass spectrometry. Computational and electrochemical aspects, as well as cytotoxic activity and subcellular localisation, were studied. Confocal microscopy experiments indicated that the probe was a specific mitochondria-staining agent. These in-detail analyses were useful in understanding the cytotoxic effects and mechanism of action of this novel hybrid compound. This molecule constitutes a promising prototype owing to its potential biological activities and the new strategies aimed at mechanistic investigations in cells and in vivo, and opens up an interesting avenue of research.
RESUMEN
A series of novel isocoumarin derivatives were synthesized using Castro-Stephens cross-coupling. Moreover, novel 3,4-dihydroisocoumarin derivatives were obtained by catalytic hydrogenation of the corresponding isocoumarin precursors. The antiproliferative activity of all compounds was evaluated in vitro in different tumor cells. Furthermore, docking calculations were performed for the kallikrein 5 (KLK5) active site to predict the possible mechanism of action of this series of compounds. Theoretical findings indicate that the 3,4-dihydroisocoumarin derivative 10a forms hydrogen bonds with Ser190 and Gln192 residues of KLK5. This derivative was the most active compound in the series with potent antiproliferative activity and high selectivity index (SI > 378.79) against breast cancer cells (MCF-7, GI50 = 0.66 µg mL(-1)). This compound represents a promising matrix for developing new antiproliferative agents.
Asunto(s)
Antineoplásicos/farmacología , Isocumarinas/química , Isocumarinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isocumarinas/síntesis química , Modelos Moleculares , Estructura Molecular , Relación Estructura-ActividadRESUMEN
Twelve novel 8-hydroxyquinoline derivatives were synthesized with good yields by performing copper-catalyzed Huisgen 1,3-dipolar cycloaddition ("click" reaction) between an 8-O-alkylated-quinoline containing a terminal alkyne and various aromatic or protected sugar azides. These compounds were evaluated in vitro for their antiproliferative activity on various cancer cell types. Protected sugar derivative 16 was the most active compound in the series, exhibiting potent antiproliferative activity and high selectivity toward ovarian cancer cells (OVCAR-03, GI50 < 0.25 µg mL(-1)); this derivative was more active than the reference drug doxorubicin (OVCAR-03, GI50 = 0.43 µg mL(-1)). In structure-activity relationship (SAR) studies, the physico-chemical parameters of the compounds were evaluated and docking calculations were performed for the α-glucosidase active site to predict the possible mechanism of action of this series of compounds.
Asunto(s)
Oxiquinolina/análogos & derivados , Oxiquinolina/farmacología , Triazoles/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Simulación de Dinámica Molecular , Estructura Molecular , Oxiquinolina/síntesis química , Oxiquinolina/química , Relación Estructura-Actividad , Triazoles/farmacologíaRESUMEN
Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline's positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline's antibiotic actions and divalent cation (Ca(2+); Mg(2+)) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75 mg/kg, 47.50mg/kg or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca(2+) chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca(2+) chelating activities might confer greater safety over conventional tetracyclines.
Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Dinoprostona/biosíntesis , Hiperalgesia/tratamiento farmacológico , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Minociclina/farmacología , Nervio Ciático/lesiones , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Células Cultivadas , Femenino , Humanos , Hiperalgesia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Minociclina/uso terapéutico , Neuralgia/tratamiento farmacológico , Neuralgia/fisiopatología , Estimulación Física , Ratas , Ratas Wistar , Nervio Ciático/fisiopatología , Transducción de Señal , TactoRESUMEN
A series of new oxygenated analogues of marine 3-alkylpyridine alkaloids were prepared from 3-pyridinepropanol in few steps and in good yields. The key step for the synthesis of these compounds was a Williamson etherification under phase-transfer conditions. All new compounds were evaluated for their antiplasmodial activity and cytotoxicity. A significant reduction in parasitaemia was observed for some of the prepared compounds, and the majority of them exhibited a selectivity index (SI) ranging from 2.78 to 15.58, which suggests that these compounds may be a promising class of substances with antimalarial activity.