RESUMEN
Calcium phosphate coatings have been applied to titanium metal substrates and their alloys as a synergistic alternative capable of combining the mechanical properties of metals and the excellent bioactive properties provided by ceramic materials. However, the unsatisfactory adhesion of hydroxyapatite coatings on metallic substrates, as well as their limitation when subjected to mechanical stresses have been reported as a limitation. Biofunctional coatings have been proposed as an alternative to single ceramic coatings, aiming at optimizing the long-term clinical success of biomaterials such as Ti. This work aims at evaluating the morphological properties and biological behavior of Ti-cp coated with matrix composite coating hydroxyapatite-containing hybrid. The hybrid matrix was obtained from TEOS and MTES silicon precursors, with dispersed hydroxyapatite suspended by dip coating. For the morphological characterization FTIR, SEM/FEG, AFM and contact angle measurement were used. Biological behavior was evaluated for toxicity, cell viability and the osteogenic differentiation capacity of mesenchymal stem cells. The composite coatings obtained showed regular dispersion of hydroxyapatite particles in the hybrid matrix, with uniform coating adhering to the Ti-Cp substrate. Nevertheless, although they provided similar viability behavior of mesenchymal stem cells to the Ti-Cp substrate, the evaluated coatings did not present osteoinductive properties. This result is probably due to the pronounced hydrophobic behavior caused by the incorporation of HA.
Asunto(s)
Fosfatos de Calcio/química , Durapatita/química , Titanio/química , Aleaciones , Adhesión Celular , Diferenciación Celular , Supervivencia Celular , Materiales Biocompatibles Revestidos/química , Colorimetría , Humanos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Osteoblastos/citología , Osteogénesis , Regeneración , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de SuperficieRESUMEN
Currently, titanium and its alloys are the most used materials for biomedical applications. However, because of the high costs of these metals, new materials, such as niobium, have been researched. Niobium appears as a promising material due to its biocompatibility, and excellent corrosion resistance. In this work, anodized niobium samples were produced and characterized. Their capacity to support the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) was also tested. The anodized niobium samples were characterized by SEM, profilometry, XPS, and wettability. BM-MSCs were cultured on the samples during 14 days, and tested for cell adhesion, metabolic activity, alkaline phosphatase activity, and mineralization. Results demonstrated that anodization promotes the formation of a hydrophilic nanoporous oxide layer on the Nb surface, which can contribute to the increase in the metabolic activity, and in osteogenic differentiation of BM-MSCs, as well as to the extracellular matrix mineralization.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Niobio/farmacología , Osteogénesis/efectos de los fármacos , Andamios del Tejido , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/fisiología , Células Cultivadas , Electrólisis , Femenino , Calor , Ensayo de Materiales , Células Madre Mesenquimatosas/fisiología , Niobio/química , Oxidación-Reducción , Ratas , Ratas Endogámicas SHR , Propiedades de Superficie , Andamios del Tejido/químicaRESUMEN
There is a big waste generation nowadays due to the growing demand for innovation and the fact that more and more products have a reduced lifetime, increasing the volume of dumps and landfills. Currently, one of the segments of large volume is the technology waste, which reflects on the printed circuit boards (PCBs) that are the basis of the electronics industry. This type of waste disposal is difficult, given that recycling is complex and expensive, because of the diversity of existing materials and components, and their difficult separation process. Regarding the material involved in PCBs, there are metal fractions (MFs) and non-metallic fractions (NMFs), of which the recycling of NMFs is one of the most important and difficult processes, because they amount to about 70% of the weight of the PCB's waste. In the present paper, a literature review of the recycling of non-metallic fractions (NMFs) has been carried out, showing different studies and guidelines regarding this type of recycling, emphasizing that this type of waste still lacks for further application.
RESUMEN
The constant growth in generation of solid wastes stimulates studies of recycling processes. The electronic scrap is part of this universe of obsolete and/or defective materials that need to be disposed of more appropriately, or then recycled. In this work, printed circuit boards, that are part of electronic scrap and are found in almost all electro-electronic equipments, were studied. Printed circuit boards were collected in obsolete or defective personal computers that are the largest source of this kind of waste. Printed circuit boards are composed of different materials such as polymers, ceramics and metals, which makes the process more difficult. However, the presence of metals, such as copper and precious metals encourage recycling studies. Also the presence of heavy metals, as Pb and Cd turns this scrap into dangerous residues. This demonstrates the need to search for solutions of this kind of residue, in order to have it disposed in a proper way, without harming the environment. At the first stage of this work, mechanical processing was used, as comminution followed by size, magnetic and electrostatic separation. By this process it was possible to obtain a concentrated fraction in metals (mainly Cu, Pb and Sn) and another fraction containing polymers and ceramics. The copper content reached more than 50% in mass in most of the conductive fractions and significant content of Pb and Sn. At the second stage, the fraction concentrated in metals was dissolved with acids and treated in an electrochemical process in order to recover the metals separately, especially copper. The results demonstrate the technical viability of recovering copper using mechanical processing followed by an electrometallurgical technique. The copper content in solution decayed quickly in all the experiments and the copper obtained by electrowinning is above 98% in most of the tests.