RESUMEN
The white-rot fungus Pleurotus ostreatus was used for biological pretreatment of peach palm (Bactris gasipaes) lignocellulosic wastes. Non-treated and treated B. gasipaes inner sheaths and peel were submitted to hydrolysis using a commercial cellulase preparation from T. reesei. The amounts of total reducing sugars and glucose obtained from the 30 d-pretreated inner sheaths were seven and five times higher, respectively, than those obtained from the inner sheaths without pretreatment. No such improvement was found, however, in the pretreated B. gasipaes peels. Scanning electronic microscopy of the lignocellulosic fibers was performed to verify the structural changes caused by the biological pretreatments. Upon the biological pretreatment, the lignocellulosic structures of the inner sheaths were substantially modified, making them less ordered. The main features of the modifications were the detachment of the fibers, cell wall collapse and, in several cases, the formation of pores in the cell wall surfaces. The peel lignocellulosic fibers showed more ordered fibrils and no modification was observed after pre-treatment. In conclusion, a seven-fold increase in the enzymatic saccharification of the Bactris gasipaes inner sheath was observed after pre-treatment, while no improvement in enzymatic saccharification was observed in the B. gasipaes peel.
RESUMEN
The peach palm (Bactris gasipaes Kunth) is a palm tree native to the Amazon region, with plantations expanding to the Brazilian Southwest and South regions. This work is a critical review of historical, botanical, social, environmental, and nutritional aspects of edible and nonedible parts of the plant. In Brazil, the importance of the cultivation of B. gasipaes to produce palm heart has grown considerably, due to its advantages in relation to other palm species, such as precocity, rusticity and tillering. The last one is especially important, as it makes the exploitation of peach palm hearts, contrary to what happens with other palm tree species, a non-predatory practice. Of special interest are the recent efforts aiming at the valorization of the fruit as a source of carotenoids and starch. Further developments indicate that the B. gasipaes lignocellulosic wastes hold great potential for being upcycled into valuable biotechnological products such as prebiotics, enzymes, cellulose nanofibrils and high fiber flours. Clean technologies are protagonists of the recovery processes, ensuring the closure of the product's life cycle in a "green" way. Future research should focus on expanding and making the recovery processes economically viable, which would be of great importance for stimulating the peach palm production chain.
RESUMEN
Endocrine disruptors represent risks to aquatic ecosystem and humans, and are commonly detected in surface water. Photochemical treatments can be used to remove 17ß-estradiol (E2), but few studies have analyzed the kinetics, intermediates, and 17ß-estradiol degradation pathways in natural matrices. In this study, the photochemical behavior of E2 under ultraviolet irradiation (UVC, 254 nm) associated with oxidants (H2O2 or O3) or photocatalyst (TiO2) was investigated to evaluate the degradation potential and the transformation pathway in a natural surface water matrix. Additionally, computational modeling analyses with Ecological Structure Activity Relationships (ECOSAR) software were performed to predict the toxicity from the E2 and its transformation byproducts. E2 degradation kinetics showed adjusted to the pseudo-first-order kinetic model, being kUV/O3 > kUV/TiO2 > kUV/H2O2 > kUV. Eight transformation byproducts were identified by liquid chromatography with time-of-flight mass spectrometry (HPLC/TOF-MS) in natural surface water samples. These byproducts formed as the result of opening the aromatic ring and adding the hydroxyl radical. The E2 degradation pathway was proposed based on the byproducts identified in this study and in previous studies, suggesting the formation of aliphatic and hydroxylated byproducts. E2 treatment presented both very toxic and not harmful byproducts.
Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Ecosistema , Estradiol , Humanos , Cinética , Oxidación-Reducción , Estrés Oxidativo , Fotólisis , Rayos UltravioletaRESUMEN
1,4-Dioxane is a synthetic cyclic ether traditionally used as a chlorinated solvent stabilizer. It is a small molecule and recalcitrant compound that is difficult to remove by conventional processes and in this regard, there is a need for the development of new technologies. In this study, an innovative CuO-coated ceramic membrane (CM) reactor system that can be used to oxidize 1,4-dioxane dissolved in surface water by catalytic ozonation was developed. The effect of the thickness of the CuO deposited on the ceramic membrane surface on the permeability, fouling resistance, 1,4-dioxane removal, and toxicity was evaluated. The efficiency of the hybrid ozonation coupled to the use of a CuO-coated CM in 1,4-dioxane removal and the antifouling properties were assessed from TOC and 1,4-dioxane removal kinetics data. Reusability in four cycles was also tested. The performance of the CuO-coated CM remained stable during the four cycles of the reusability test. The ceramic membrane coated with CuO particles coupled with ozonation is appropriate for 1,4-dioxane degradation in the aqueous phase (45% efficiency, rate constant increased by a factor of 2.98 compared with the uncoated-hybrid process) and fouling removal (60 min to recovery the permeate flux).