RESUMEN
The Iguaçu River is one of the largest and most important rivers in the Southern of Brazil. The Upper Iguaçu Basin is responsible for water supply (80%) of the Metropolitan Region of Curitiba (MRC). After crossing a large urban region, the river is polluted by domestic and industrial sewage, but despite of that few ecotoxicological studies have been performed in order to evaluate the water quality from Iguaçu River. The aim of the present study was to investigate the risk of exposure of Iguaçu water to biota and also human population. In this terms, was utilized the survival effect and the morphological deformities in larval embryos of Rhamdia quelen, a native South America species. The results showed a high level of pollution in all studied sites along the Upper Iguaçu River including PAHs and toxic metals such as lead. The lethal and non-lethal effects described in earlier stages of development suggest an elevated risk to biota. This data was corroborated by the theoretical model, showing that the pollutants present in water from Iguaçu River may further reduce the fish population density including risk of local extinction. The present study reflect the needs to conduct in-depth research to evaluate the real impact of human activities on the endemic fish biota of Iguaçu River including the risk for human populations.
Asunto(s)
Biota/efectos de los fármacos , Bagres/crecimiento & desarrollo , Embrión no Mamífero/citología , Hidrocarburos Policíclicos Aromáticos/toxicidad , Ríos/química , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua/normas , Animales , Brasil , Embrión no Mamífero/efectos de los fármacos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisisRESUMEN
This paper presents results related to the occurrence and distribution of estrogens along the Brazilian coast. Three mangrove areas were chosen to evaluate the presence of estrogens in surface sediments of mangrove forests. The presence of estrogens was observed in all studied sites. 17-α-Ethinylestradiol (EE2), a synthetic estrogen, was the most common and has been found in higher concentration (0.45-129.78 ng/g) compared to 17-ß-estradiol (E1) and estrone (E2) (both being natural estrogens). The concentrations of E1 and E2 ranged from 0.02 to 49.27 ng/g and 0.03 to 39.77 ng/g, respectively. Theoretically, under anaerobic conditions EE2 can be reduced to E1 even in environments such as sediments of mangrove forests, which are essentially anaerobic. Even if the concentrations of estrogens seem to be insignificant in some samples, the effects remain uncertain.