Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35889689

RESUMEN

The mechanical and wear behavior of CrN/CrAlN multilayers were improved by tailoring the experimental conditions of a hybrid magnetron sputtering process based on a high-power impulse (HiPIMS) and two direct current magnetron sputtering (dcMS) power supplies. To this end, the influence of the base layer and of the combination of Cr and CrAl targets, which were switched to the dcMS and HiPIMS power supplies in different configurations, were investigated with respect to the growth of ceramic CrN/CrAlN multilayers onto commercial gas-nitrided diesel piston rings. The microstructure, grain morphology, and mechanical properties were evaluated by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and instrumented nanoindentation. Bench wear tests simulating the operation of a combustion engine were conducted against a gray cast iron cylinder liner under reciprocating conditions using 0W20 oil as a lubricating agent enriched with Al2O3 particles. The results revealed a significant increase in hardness, resistance to plastic strain, and wear resistance when two CrAl targets were switched to a HiPIMS and a dcMS power supply, and a Cr target was powered by another dcMS power supply. The compressive coating stresses were slightly reduced due to the soft Cr base layer that enabled stress relief within the multilayer. The proposed concept of hybrid magnetron sputtering outperformed the commercial PVD coatings of CrN for diesel piston rings manufactured by cathodic arc evaporation.

2.
Sci Rep ; 12(1): 2342, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149729

RESUMEN

A hybrid magnetron sputtering process (dcMS/HiPIMS) was developed to manufacture nanostructured CrN/Cr1-xAlxN multilayers, motivated by improving the low-emission efficiency when applied on gas-nitrided diesel piston rings of a next-generation of combustion engines. In order to improve the mechanical, tribological, and corrosion behavior of the multilayers, the hybrid dcMS/HiPIMS process was designed by selecting the optimal sputtering procedure applied to AISI 440 base steel. The effect of substrate bias and carousel rotational speed on the phase composition, crystallographic texture, residual stresses, surface roughness, coating periodicity and densification, instrumented hardness, elastic modulus, as well as wear and corrosion resistance was determined. The results have demonstrated that hybrid magnetron sputtering produces multilayers with a superlattice structure, which outperforms commercial PVD coatings of CrN for diesel piston rings manufactured by cathodic arc evaporation. Also, multilayer periodicities in the range of 5 to 10 nm yield the best tribological performance under bench tests for the piston ring/cylinder liner system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA