RESUMEN
Serotonin (5-HT) receptors are found throughout central and peripheral nervous systems, mainly in brain regions involved in the neurobiology of anxiety and depression. 5-HT receptors are currently promising targets for discovering new drugs for treating disorders ranging from migraine to neuropsychiatric upsets, such as anxiety and depression. It is well described in the current literature that the brain expresses seven types of 5-HT receptors comprising eighteen distinct subtypes. In this article, we comprehensively reviewed 5-HT1-7 receptors. Of the eighteen 5-HT receptors known today, thirteen are G protein-coupled receptors (GPCRs) and represent targets for approximately 40% of drugs used in humans. Signaling pathways related to these receptors play a crucial role in neurodevelopment and can be modulated to develop effective therapies to treat anxiety and depression. This review presents the experimental evidence of the modulation of the "serotonergic receptosome" in the treatment of anxiety and depression, as well as demonstrating state-of-the-art research related to phytochemicals and these disorders. In addition, detailed aspects of the pharmacological mechanism of action of all currently known 5-HT receptor families were reviewed. From this review, it will be possible to direct the rational design of drugs towards new therapies that involve signaling via 5-HT receptors.
RESUMEN
Major depressive disorder (MDD), also known as unipolar depression, is one of the leading causes of disability and disease worldwide. The signs and symptoms are low selfesteem, anhedonia, feeling of worthlessness, sense of rejection and guilt, suicidal thoughts, among others. This review focuses on studies with molecular-based approaches involving MDD to obtain an integrated, more detailed and comprehensive view of the brain changes produced by this disorder and its treatment and how the Central Nervous System (CNS) produces neuroplasticity to orchestrate adaptive defensive behaviors. This article integrates affective neuroscience, psychopharmacology, neuroanatomy and molecular biology data. In addition, there are two problems with current MDD treatments, namely: 1) Low rates of responsiveness to antidepressants and too slow onset of therapeutic effect; 2) Increased stress vulnerability and autonomy, which reduces the responses of currently available treatments. In the present review, we encourage the prospection of new bioactive agents for the development of treatments with post-transduction mechanisms, neurogenesis and pharmacogenetics inducers that bring greater benefits, with reduced risks and maximized access to patients, stimulating the field of research on mood disorders in order to use the potential of preclinical studies. For this purpose, improved animal models that incorporate the molecular and anatomical tools currently available can be applied. Besides, we encourage the study of drugs that do not present "classical application" as antidepressants, (e.g., the dissociative anesthetic ketamine and dextromethorphan) and drugs that have dual action mechanisms since they represent potential targets for novel drug development more useful for the treatment of MDD.
Asunto(s)
Depresión/terapia , Neurobiología , Animales , Depresión/metabolismo , Depresión/patología , Depresión/fisiopatología , HumanosRESUMEN
Previous studies have demonstrated a protective effect of the Ang-(1-7)/Mas receptor axis on pathological cardiac hypertrophy. Also, the involvement of Mas receptor in exercise-induced cardiac hypertrophy has been suggested. However, the role of the Ang-(1-7)/Mas receptor on pregnancy-induced cardiac remodelling remains unknown. The objective of the present study was to evaluate the participation of the Mas receptor in the development of the cardiac hypertrophy and fibrosis induced by gestation. Female Wistar rats were divided in three groups: control, pregnant and pregnant treated with Mas receptor antagonist A-779. Wild-type (WT) and Mas-knockout (KO) mice were distributed in non-pregnant and pregnant groups. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography. The medial part of the left ventricle (LV) was collected for histological analysis. Echocardiographic analysis was used to evaluate cardiac function. SBP was not changed by pregnancy or A-779 treatment in the Wistar rats. Pharmacological blockade or genetic deletion of Mas receptor attenuates the pregnancy-induced myocyte hypertrophy. The treatment with A-779 or genetic deletion of the Mas receptor increased the collagen III deposition in LV from pregnant animals without changing fibroblast proliferation. KO mice presented a lower ejection fraction (EF), fractional shortening (FS) and stroke volume (SV) and higher end systolic volume (ESV) compared with WT. Interestingly, pregnancy restored these parameters. In conclusion, these data show that although Mas receptor blockade or deletion decreases physiological hypertrophy of pregnancy, it is associated with more extracellular matrix deposition. These alterations are associated with improvement of cardiac function through a Mas-independent mechanism.
RESUMEN
Synadenium umbellatum Pax., popularly known in Brazil as "cola-nota," "avelós," "cancerola," and "milagrosa", is a plant species used in folk medicine for the treatment of inflammation, pain, and several diseases. This study aimed to investigate the antinociceptive and anti-inflammatory activities of the ethanolic extract from Synadenium umbellatum Pax. leaves (EES) and its hexane (HF), chloroform (CF), and methanol/water (MF) fractions using the acetic acid-induced abdominal writhing test, formalin-induced paw licking test, tail flick test, croton oil-induced ear edema test, and carrageenan-induced peritonitis test. EES and MF reduced the number of acetic acid-induced abdominal writhes, while CF and HF did not. EES effect on acetic acid-induced abdominal writhing was reversed with a pretreatment with naloxone. EES reduced licking time in both phases of the formalin-induced paw licking test, but did not prolong the latency in the tail flick test. These results show that EES presented antinociceptive activity, probably involving the opioid system, anti-inflammatory activity in the croton oil-induced ear edema test, and leukocyte migration into the intraperitoneal cavity. MF also presented anti-inflammatory activity in the croton oil-induced ear edema test. In conclusion, EES and MF have antinociceptive activity involving the opioid system and anti-inflammatory activity.