Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893644

RESUMEN

The credibility of a pathogen detection assay is measured using specific parameters including repeatability, specificity, sensitivity, and reproducibility. The use of high-throughput sequencing (HTS) as a routine detection assay for viruses and viroids in citrus was previously evaluated and, in this study, the reproducibility and sensitivity of the HTS assay were assessed. To evaluate the reproducibility of HTS, the same plants assayed in a previous study were sampled again, one year later, and assessed in triplicate using the same analyses to construct the virome profile. The sensitivity of the HTS assay was compared to routinely used RT-PCR assays in a time course experiment, to compensate for natural pathogen accumulation in plants over time. The HTS pipeline applied in this study produced reproducible and comparable results to standard RT-PCR assays for the detection of CTV and three viroid species in citrus. Even though the limit of detection of HTS can be influenced by pathogen concentration, sample processing method and sequencing depth, detection with HTS was found to be either equivalent or more sensitive than RT-PCR in this study.

2.
Plant Dis ; 106(8): 2221-2227, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35037481

RESUMEN

Citrus virus A (CiVA), a novel negative-sense single-stranded RNA virus assigned to the species Coguvirus eburi in the genus Coguvirus, was detected in South Africa with the use of high-throughput sequencing after its initial discovery in Italy. CiVA is closely related to citrus concave gum-associated virus (CCGaV), recently assigned to the species Citrus coguvirus. Disease association with CiVA is, however, incomplete. CiVA was detected in grapefruit (C. paradisi Macf.), sweet orange [C. sinensis (L.) Osb.], and clementine (C. reticulata Blanco) in South Africa, and a survey to determine the distribution, symptom association, and genetic diversity was conducted in three provinces and seven citrus production regions. The virus was detected in 'Delta' Valencia trees in six citrus production regions, and a fruit rind symptom was often observed on CiVA-positive trees. Additionally, grapefruit showing symptoms of citrus impietratura disease were positive for CiVA. This virus was primarily detected in older orchards that were established prior to the application of shoot tip grafting for virus elimination in the South African Citrus Improvement Scheme. The three viral-encoded genes of CiVA isolates from each cultivar and region were sequenced to investigate sequence diversity. Genetic differences were detected between the Delta Valencia, grapefruit, and clementine samples, with greater sequence variation observed with the nucleocapsid protein (NP) compared with the RNA-dependent RNA polymerase (RdRp) and the movement protein (MP). A real-time detection assay, targeting the RdRp, was developed to simultaneously detect citrus-infecting coguviruses, CiVA and CCGaV, using a dual priming reverse primer to improve PCR specificity.


Asunto(s)
Citrus , Virus ARN , Variación Genética , Enfermedades de las Plantas , ARN Polimerasa Dependiente del ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sudáfrica
3.
Virol J ; 18(1): 61, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33752714

RESUMEN

BACKGROUND: High-throughput sequencing (HTS) has been applied successfully for virus and viroid discovery in many agricultural crops leading to the current drive to apply this technology in routine pathogen detection. The validation of HTS-based pathogen detection is therefore paramount. METHODS: Plant infections were established by graft inoculating a suite of viruses and viroids from established sources for further study. Four plants (one healthy plant and three infected) were sampled in triplicate and total RNA was extracted using two different methods (CTAB extraction protocol and the Zymo Research Quick-RNA Plant Miniprep Kit) and sent for Illumina HTS. One replicate sample of each plant for each RNA extraction method was also sent for HTS on an Ion Torrent platform. The data were evaluated for biological and technical variation focussing on RNA extraction method, platform used and bioinformatic analysis. RESULTS: The study evaluated the influence of different HTS protocols on the sensitivity, specificity and repeatability of HTS as a detection tool. Both extraction methods and sequencing platforms resulted in significant differences between the data sets. Using a de novo assembly approach, complemented with read mapping, the Illumina data allowed a greater proportion of the expected pathogen scaffolds to be inferred, and an accurate virome profile was constructed. The complete virome profile was also constructed using the Ion Torrent data but analyses showed that more sequencing depth is required to be comparative to the Illumina protocol and produce consistent results. The CTAB extraction protocol lowered the proportion of viroid sequences recovered with HTS, and the Zymo Research kit resulted in more variation in the read counts obtained per pathogen sequence. The expression profiles of reference genes were also investigated to assess the suitability of these genes as internal controls to allow for the comparison between samples across different protocols. CONCLUSIONS: This study highlights the need to measure the level of variation that can arise from the different variables of an HTS protocol, from sample preparation to data analysis. HTS is more comprehensive than any assay previously used, but with the necessary validations and standard operating procedures, the implementation of HTS as part of routine pathogen screening practices is possible.


Asunto(s)
Citrus , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/virología , Virus de Plantas , Viroides , Citrus/virología , Virus de Plantas/genética , Plantas/virología , ARN , Viroides/genética
4.
Plant Dis ; 105(2): 361-367, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32748720

RESUMEN

Determination of virus genomes and differentiation of strains and strain variants facilitate the linkage of biological expression to specific genetic units. For effective management of stem pitting disease of citrus tristeza virus (CTV) by cross-protection, an understanding of these links is necessary. The deliberate field application of a biological agent such as a virus first requires a thorough assessment of the long-term impact before it can be applied commercially. Three CTV sources were genetically characterized as different variants of the T68 strain, and their long-term effects on stem pitting and production were investigated. The different CTV sources were inoculated to 'Star Ruby' grapefruit trees and evaluated for a number of biological parameters in a field trial in the Limpopo Province of South Africa over a 10-year period. Significant differences were observed in stem pitting severity, impact on tree growth, yield, and the percentage of small fruit produced. These T68 variants were also associated with different stem pitting phenotypes. The variants differed in only 44 nucleotide positions across their genomes, and these minor genetic differences can therefore be used to identify possible genome regions affecting stem pitting.


Asunto(s)
Citrus paradisi , Citrus , Closterovirus , Enfermedades de las Plantas , Sudáfrica
5.
Plant Dis ; 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32840431

RESUMEN

Huanglongbing (HLB, Asian Citrus Greening), the most devastating disease of citrus has not been detected in southern Africa (Gottwald, 2010). HLB is associated with 'Candidatus Liberibacter asiaticus' (CLas), a phloem-limited bacterium vectored by Diaphorina citri Kuwayama (Hemiptera: Liviidae), the Asian Citrus Psyllid (ACP). African Citrus Greening, associated with 'Candidatus Liberibacter africanus' (CLaf) and its vector the African Citrus Triozid, Trioza erytreae (Del Guercio) (Hemiptera: Triozidae), are endemic to Africa, although not previously reported from Angola. African Greening is less severe than HLB, largely due to heat sensitivity of CLaf and its vector. Introduction of HLB into southern Africa would be devastating to citrus production in commercial and informal sectors. Concern was raised that CLas or ACP might hae inadvertently been introduced into Angola. In July 2019, a survey was conducted in two citrus nurseries in Luanda and Caxito and in different orchards on 7 farms surrounding Calulo and Quibala. Yellow sticky traps for insects were placed at the various localities and collected after c. 3 weeks. Breeding signs of T. erytreae (pit galls) were observed on citrus in some locations, but no insect vectors were detected on traps. Trees were inspected for signs and symptoms of citrus pests and diseases, particularly those that resemble HLB (foliar blotchy mottle, shoot chlorosis, vein yellowing and corking, lopsided fruit with aborted seeds and colour inversion) and its vectors (pit galls on leaves or waxy exudates). Leaves and shoots with suspect symptoms were sampled for laboratory analysis (43 samples). DNA was extracted from petiole and midrib tissue of leaves using a modified CTAB extraction protocol of Doyle and Doyle (1990). Real-time PCR was done using universal Liberibacter primers of Roberts et al. (2015), CLaf specific primers of Li et al. (2006) and CLas specific primers of Bao et al. (2019). All real-time PCR protocols indicated the presence of CLaf in 6 samples (Tab. S1). CLas or other citrus Liberibacter species were not detected. The presence of CLaf in sample 37 was confirmed by constructing a library (NEXTFLEX® DNA Sequencing Kit, PerkinElmer) with extracted DNA and performing high-throughput sequencing on an Ion Torrent™ S5™ platform (Central Analytical Facility, Stellenbosch University). To improve the quality of the reads, all 233,617,700 obtained reads were trimmed from the 3' end to a maximum length of 240 nt using Trimmomatic (Bolger et al. 2014). The high quality reads were mapped to the Citrus sinensis reference genome (NC_023046.1) using Bowtie 2.3.4 (Langmead and Salzberg 2012) to subtract all the reads that had high identity to the host plant (number of mismatches allowed in the seed was set to 1). The 14,691,369 unmapped reads (6.2% of original data) were mapped to the CLaf reference genome NZ_CP004021.1 using CLC Genomics Workbench 10.1.1 (Qiagen) (Length fraction = 0.8; Similarity fraction = 0.9). A CLaf consensus genome was generated that spanned 99.7% of the reference genome and the 163001 mapped reads had a 22.9 mean read coverage. The consensus sequence was 99.7% identical to NZ_CP004021.1 and was submitted to Genbank as accession: CP054879. The positive CLaf detections were from trees with typical HLB or African Citrus Greening symptoms, viz. lopsided fruit with green stylar ends, aborted seed and stained columella at base of fruit button; yellow shoots with leaves showing symptoms of blotchy mottle and vein yellowing and corking (Fig. S1) in a commercial citrus farm outside Calulo and included 2 'Ponkan' mandarin (C. reticulata), 2 Valencia and 1 'Navelina' tree (C. sinensis), and a citrus nursery in Luanda (1 lime tree; C. aurantifolia) (Tab. S1). This first report of CLaf in Angola highlights the need to prevent spread by removing infected trees and managing the insect vector, as well as the need for further surveys to determine the occurrence of African Greening and its vectors in other provinces and to confirm the absence of exotic citrus pests and diseases. References Bao, M. et al. 2020. Plant Dis. 104:527 Bolger, A. M. et al. 2014. Bioinformatics. 30:2114-2120. Doyle, J.J. and Doyle, J.L. 1990. Focus 12:13 Gottwald, T.R. 2010. Annu. Rev. Phytopathol. 48:119 Langmead, B. and Salzberg, S. 2012. Nature Methods. 9:357-359. Li, W. et al. 2006. Jnl. Microbiol. Methods 66:104 Roberts, R. et al. 2015. Int. J. Syst. Evol. Micr. 65:723.

6.
Plant Dis ; 104(9): 2362-2368, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32689882

RESUMEN

Two isolates of the T68 genotype of citrus tristeza virus (CTV) were derived from a common source, GFMS12, by single aphid transmission. These isolates, named GFMS12-8 and GFMS12-1.3, induced stem pitting with differing severity in 'Duncan' grapefruit (Citrus × paradisi [Macfad.]). Full-genome sequencing of these isolates showed only minor nucleotide sequence differences totaling 45 polymorphisms. Numerous nucleotide changes, in relatively close proximity, were detected in the p33 open reading frame (ORF) and the leader protease domains of ORF1a. This is the first report of full-genome characterization of CTV isolates of a single genotype, derived from the same source, but showing differences in pathogenicity. The results demonstrate the development of intragenotype heterogeneity known to occur with single-stranded RNA viruses. Identification of genetic variability between isolates showing different pathogenicity will enable interrogation of specific genome regions for potential stem pitting determinants.


Asunto(s)
Citrus paradisi , Citrus , Animales , Closterovirus , Genotipo , Filogenia , Enfermedades de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA