Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Bodyw Mov Ther ; 37: 350-359, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432828

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a chronic autoimmune disease that causes progressive functional impairment, mainly in walking tasks. Noninvasive brain stimulation (NIBS) could influence the motor function and improving gait ability of patients. OBJECTIVE: The aim was to analyze the effects of NIBS (transcranial direct current stimulation [tDCS] or transcranial magnetic stimulation [TMS] on functional locomotion in people with multiple sclerosis (PwMS). METHODS: A search was conducted for randomized controlled trials published up to November 2023 comparing the application of NIBS versus a sham or control group. The primary outcome were spatiotemporal gait parameters and functional mobility. Two review authors independently assessed the risk of bias in the included studies, and we used the Grading of Recommendations Assessment, Development, and Evaluation methodology to rate the certainty of the evidence for each outcome. A meta-analysis was performed by pooling the appropriate data using RevMan Web. RESULTS: A total of four clinical trials were included for metanalysis. We observed that there is no statistically significant difference in overall effect in gait speed (MD = 0.08; 95% CI: -0.08-0.24; p = 0.32), and cadence (MD = 0.22; 95% CI: -11.54-11.98; p = 0.97%) between groups. But there was a statistically significant difference in overall effect in stride length between groups (MD:0.19; 95% CI: 0.07-0.31; p = 0.002), mainly when the intervention performed by multiple sessions and associated with motor rehabilitation (MD = 0.29; 95% CI: 0.14-0.44; p = 0.0002). CONCLUSIONS: tDCS applied by multiple session and combined with motor rehabilitation (i.e., aerobic and/or resistance training) can improve stride length in PwMS.


Asunto(s)
Esclerosis Múltiple , Estimulación Transcraneal de Corriente Directa , Humanos , Marcha , Caminata , Encéfalo
2.
J Cent Nerv Syst Dis ; 15: 11795735231195693, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025401

RESUMEN

Background: SARS-CoV-2 infection affects multiple systems, including musculoskeletal, neurological, and respiratory systems. Changes associated with physical inactivity due to prolonged hospitalization can affect the functional capacity of individuals with long coronavirus disease 2019 (COVID-19) or post-COVID-19 condition and may cause changes in some postural control functions, such as verticality. Objectives: This study aimed to evaluate the perception of verticality in individuals with long COVID. Design: Cross-sectional study. Methods: This study included 60 participants with post-COVID-19 condition divided into 2 groups: hospitalized group (n = 24), those hospitalized owing to SARS-CoV-2 infection; and non-hospitalized group (n = 36), those infected with SARS-CoV-2 but not hospitalized. All participants were examined using a post-COVID-19 functional status (PCFS), sit-to-stand test, grip strength assessment, painful and tactile sensory assessments, visual acuity assessment, and vestibular assessment. Verticality perception was evaluated using the subjective visual vertical (SVV) and subjective haptic vertical (SHV) tests. In both tests, the absolute values (positive values only) and true values (positive and negative values) were considered. To verify potential confounders that could influence the verticality of the results, logistic regression models were used for categorical variables and multiple linear regressions were used for continuous variables. For analysis between groups, the independent samples test (Mann-Whitney U test) was used. Results: There were no confounders between clinical variables and verticality in either group. There was a significant increase in absolute SVV (mean deviation [MD]: 2.83; P < .0001) and true SVV (MD: -4.18; P = .005) in the hospitalized group compared to the non-hospitalized group. Furthermore, there was a significant increase in the true SHV (MD: -3.6; P = .026) in the hospitalized group compared to that in the non-hospitalized group. Conclusion: Less accurate visual and haptic verticality perception task performance was observed in hospitalized patients with post-COVID-19 condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA