Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem J ; 478(21): 3891-3903, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34661234

RESUMEN

The pathogenic protist Trypanosoma cruzi uses kissing bugs as invertebrate hosts that vectorize the infection among mammals. This parasite oxidizes proline to glutamate through two enzymatic steps and one nonenzymatic step. In insect vectors, T. cruzi differentiates from a noninfective replicating form to nonproliferative infective forms. Proline sustains this differentiation, but to date, a link between proline metabolism and differentiation has not been established. In T. cruzi, the enzymatic steps of the proline-glutamate oxidation pathway are catalyzed exclusively by the mitochondrial enzymes proline dehydrogenase [TcPRODH, EC: 1.5.5.2] and Δ1-pyrroline-5-carboxylate dehydrogenase [TcP5CDH, EC: 1.2.1.88]. Both enzymatic steps produce reducing equivalents that are able to directly feed the mitochondrial electron transport chain (ETC) and thus produce ATP. In this study, we demonstrate the contribution of each enzyme of the proline-glutamate pathway to ATP production. In addition, we show that parasites overexpressing these enzymes produce increased levels of H2O2, but only those overexpressing TcP5CDH produce increased levels of superoxide anion. We show that parasites overexpressing TcPRODH, but not parasites overexpressing TcP5CDH, exhibit a higher rate of differentiation into metacyclic trypomastigotes in vitro. Finally, insect hosts infected with parasites overexpressing TcPRODH showed a diminished parasitic load but a higher percent of metacyclic trypomastigotes, when compared with controls. Our data show that parasites overexpressing both, PRODH and P5CDH had increased mitochondrial functions that orchestrated different oxygen signaling, resulting in different outcomes in relation to the efficiency of parasitic differentiation in the invertebrate host.


Asunto(s)
Enfermedad de Chagas/parasitología , Mitocondrias/metabolismo , Prolina Oxidasa/metabolismo , Rhodnius/parasitología , Trypanosoma cruzi/patogenicidad , Animales , Diferenciación Celular
2.
PLoS One ; 7(10): e48170, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23118944

RESUMEN

Phytomonas species are plant parasites of the family Trypanosomatidae, which are transmitted by phytophagous insects. Some Phytomonas species cause major agricultural damages. The hemipteran Oncopeltus fasciatus is natural and experimental host for several species of trypanosomatids, including Phytomonas spp. The invasion of the insect vectors' salivary glands is one of the most important events for the life cycle of Phytomonas species. In the present study, we show the binding of Phytomonas serpens at the external face of O. fasciatus salivary glands by means of scanning electron microscopy and the in vitro interaction of living parasites with total proteins from the salivary glands in ligand blotting assays. This binding occurs primarily through an interaction with a 130 kDa salivary gland protein. The mass spectrometry of the trypsin-digest of this protein matched 23% of human laminin-5 ß3 chain precursor sequence by 16 digested peptides. A protein sequence search through the transcriptome of O. fasciatus embryo showed a partial sequence with 51% similarity to human laminin ß3 subunit. Anti-human laminin-5 ß3 chain polyclonal antibodies recognized the 130 kDa protein by immunoblotting. The association of parasites with the salivary glands was strongly inhibited by human laminin-5, by the purified 130 kDa insect protein, and by polyclonal antibodies raised against the human laminin-5 ß3 chain. This is the first report demonstrating that a laminin-like molecule from the salivary gland of O. fasciatus acts as a receptor for Phytomonas binding. The results presented in this investigation are important findings that will support further studies that aim at developing new approaches to prevent the transmission of Phytomonas species from insects to plants and vice-versa.


Asunto(s)
Heterópteros/parasitología , Proteínas de Insectos/metabolismo , Insectos Vectores/parasitología , Laminina/metabolismo , Glándulas Salivales/metabolismo , Trypanosomatina/fisiología , Secuencia de Aminoácidos , Animales , Anticuerpos/farmacología , Moléculas de Adhesión Celular/inmunología , Moléculas de Adhesión Celular/farmacología , Interacciones Huésped-Parásitos/efectos de los fármacos , Humanos , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/química , Laminina/antagonistas & inhibidores , Laminina/química , Datos de Secuencia Molecular , Enfermedades de las Plantas/parasitología , Unión Proteica , Glándulas Salivales/parasitología , Glándulas Salivales/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Kalinina
3.
J Biomol Screen ; 12(7): 1006-10, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17942794

RESUMEN

Adhesive interactions between cells are critical to a variety of processes, including host-pathogen relationships. The authors have developed a new technique for the observation of binding interactions in which molecules obtained from excised tissues are resolved by gel electrophoresis and transferred to a membrane. Biotinylated live cells are then kept in contact with that membrane, and their interactions with proteins of interest are detected by peroxidase-labeled streptavidin, followed by a biotin-streptavidin detection system. The adhesion proteins can eventually be identified by cutting the relevant band(s) and performing mass spectrometry or other amino acid-sequencing methods. The technique described here allows for the identification of both known and novel adhesion molecules capable of binding to live cells, among a complex mixture and without previous isolation or purification. This is especially important for the analysis of host-parasite interactions and may be extended to other types of cell-cell interactions.


Asunto(s)
Biotina/metabolismo , Animales , Electroforesis en Gel de Poliacrilamida , Interacciones Huésped-Parásitos , Insectos , Ligandos
4.
FEMS Microbiol Lett ; 254(1): 149-56, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16451193

RESUMEN

Any actual understanding of trypanosomatids in general requires a comprehensive analysis of the less-specialized species as thorough as our knowledge of the more specialized Leishmania and Trypanosoma. In this context, we have shown by antibody cross-reactivity that purified extracellular metallopeptidases from Phytomonas françai, Crithidia deanei (cured strain) and Crithidia guilhermei share common epitopes with the leishmanial gp63. Flow cytometry and fluorescence microscopy analyses indicated the presence of gp63-like molecules on the cell surface of these lower trypanosomatids. Binding assays with explanted guts of Aedes aegypti incubated with purified gp63 and the pretreatment of trypanosomatids with anti-gp63 antibodies indicated that the gp63-like molecules are involved in the adhesive process of these trypanosomatids to the A. aegypti gut wall. In addition, our results indicate for the first time that the gp63-like molecule binds to a polypeptide of 50 kDa on the A. aegypti gut epithelium extract.


Asunto(s)
Aedes/parasitología , Crithidia/patogenicidad , Metaloendopeptidasas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosomatina/patogenicidad , Aedes/metabolismo , Animales , Adhesión Celular , Crithidia/fisiología , Epitelio/metabolismo , Epitelio/parasitología , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/parasitología , Trypanosomatina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA