RESUMEN
The aggressivity is modulated in honeybee brain through a series of actions in cascade mode, with the participation of the neuropeptides AmAST A (59-76) and AmTRP (254-262). The aggressivity of honeybees was stimulated by injecting both neuropeptides in the hemocoel of the worker honeybees, which were submitted to behavioral assays of aggression. The brain of stinger individuals were removed by dissection and submitted to proteomic analysis; shotgun proteomic approach of honeybee brain revealed that both neuropeptides activate a series of biochemical processes responsible by production of energy, neuronal plasticity and cell protection. In addition to this, AmTRP (254-262) elicited the expression of proteins related to the processing of the potential of action and lipid metabolism; meanwhile AmAST A (59-76) elicited the metabolism of steroids and Juvenile hormone-related metabolism, amongst others. Apparently, the most complex biochemical process seems to be the regulation of ATP production, which occurs at two levels: i) by a subgroup of proteins common to the three experimental groups, which are over-/under-regulated through glycolysis, pyruvate pathway, Krebbs cycle and oxidative phosphorylation; ii) by a subgroup of proteins unique to the each experimental group, which seems to be regulated through Protein-Protein Interactions, where the protein network regulated by AmTRP (254-262) seems to be more complex than the other two experimental groups. SIGNIFICANCE: Recently we reported the effect of the neuropeptides AmAST A (59-76) and AmTRP (254-262) in the modulation of the aggressive behavior of the worker honeybees. Up to now it is known that the simple presence of the allatostatin and tachykinin-related-peptide in bee brain, is enough for inducing the aggressive behavior. However, nothing was known about how these neuropeptides perform their action, inducing the aggressive behavior. The results of the present study elucidated some of the metabolic pathways that were activated or inhibited to support the complex defensive behavior, which includes the aggressivity. These results certainly will impact the behavioral research of honeybees, since we are paving the way for understanding the molecular base of regulation, of individual /nest defense of honeybees.
Asunto(s)
Neuropéptidos , Proteómica , Abejas , Animales , Humanos , Encéfalo/metabolismoRESUMEN
BACKGROUND: Toxicological studies evaluating the possible harmful effects of pesticides on bees are important and allow the emergence of protection and pollinator conservation strategies. This study aimed to evaluate the effects of exposure to a sublethal concentration of imidacloprid (LC50/100 : 0.014651 ng imidacloprid µL-1 diet) on the distribution of certain proteins identified in the brain of Apis mellifera worker bees using a MALDI-imaging approach. This technique enables proteomic analysis of tissues in situ by monitoring the spatiotemporal dynamics of the biochemical processes occurring at a specific time in specific brain neuropils. For this purpose, foraging bees were exposed to an 8-day diet containing a sublethal concentration of imidacloprid corresponding to the LC50/100 . Bees were collected on day 8 of exposure, and their brains analyzed using protein density maps. RESULTS: The results showed that exposure to imidacloprid led to a series of biochemical changes, including alterations in synapse regulation, apoptosis regulation and oxidative stress, which may adversely impair the physiology of these colony bees. CONCLUSION: Worker bee contact with even tiny amounts of imidacloprid had potent effects leading to the overexpression of a series of proteins related to important cellular processes that were possibly damaged by the insecticide. © 2018 Society of Chemical Industry.
Asunto(s)
Encéfalo/efectos de los fármacos , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Animales , Apoptosis , Abejas , Femenino , Proteínas de Insectos/metabolismo , Neurópilo/efectos de los fármacos , Neurópilo/metabolismo , Estrés Oxidativo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Sinapsis/efectos de los fármacosRESUMEN
Fire ants are well-known by their aggressive stinging behavior, causing many stinging incidents of medical importance. The limited availability of fire ant venom for scientific and clinical uses has restricted, up to now, the knowledge about the biochemistry, immunology, and pharmacology of these venoms. For this study, S. invicta venom was obtained commercially and used for proteomic characterization. For this purpose, the combination of gel-based and gel-free proteomic strategies was used to assign the proteomic profile of the venom from the fire ant S. invicta. This experimental approach permitted the identification of 46 proteins, which were organized into four different groups according to their potential role in fire ant venom: true venom components, housekeeping proteins, body muscle proteins, and proteins involved in chemical communication. The active venom components that may not present toxic roles were classified into three subgroups according to their potential functions: self-venom protection, colony asepsis, and chemical communication. Meanwhile, the proteins classified as true toxins, based on their functions after being injected into the victims' bodies by the fire ants, were classified in five other subgroups: proteins influencing the homeostasis of the victims, neurotoxins, proteins that promote venom diffusion, proteins that cause tissue damage/inflammation, and allergens.