Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Pharm Des ; 29(15): 1149-1162, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37157221

RESUMEN

Nanofibers have shown promising clinical results in the process of tissue regeneration since they provide a similar structure to the extracellular matrix of different tissues, high surface-to-volume ratio and porosity, flexibility, and gas permeation, offering topographical features that stimulate cell adhesion and proliferation. Electrospinning is one of the most used techniques for manufacturing nanomaterials due to its simplicity and low cost. In this review, we highlight the use of nanofibers produced with polyvinyl alcohol and polymeric associations (PVA/blends) as a matrix for release capable of modifying the pharmacokinetic profile of different active ingredients in the regeneration of connective, epithelial, muscular, and nervous tissues. Articles were selected by three independent reviewers by analyzing the databases, such as Web of Science, PubMed, Science Direct, and Google Scholar (last 10 years). Descriptors used were "nanofibers", "poly (vinyl alcohol)", "muscle tissue", "connective tissue", "epithelial tissue", and "neural tissue engineering". The guiding question was: How do different compositions of polyvinyl alcohol polymeric nanofibers modify the pharmacokinetics of active ingredients in different tissue regeneration processes? The results demonstrated the versatility of the production of PVA nanofibers by solution blow technique with different actives (lipo/hydrophilic) and with pore sizes varying between 60 and 450 nm depending on the polymers used in the mixture, which influences the drug release that can be controlled for hours or days. The tissue regeneration showed better cellular organization and greater cell proliferation compared to the treatment with the control group, regardless of the tissue analyzed. We highlight that, among all blends, the combinations PVA/PCL and PVA/CS showed good compatibility and slow degradation, indicating their use in prolonged times of biodegradation, thus benefiting tissue regeneration in bone and cartilage connective tissues, acting as a physical barrier that results in guided regeneration, and preventing the invasion of cells from other tissues with increased proliferation rate.


Asunto(s)
Nanofibras , Alcohol Polivinílico , Humanos , Alcohol Polivinílico/química , Ingeniería de Tejidos/métodos , Sistemas de Liberación de Medicamentos , Polímeros , Proliferación Celular , Andamios del Tejido
2.
Photodiagnosis Photodyn Ther ; 32: 102032, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33017659

RESUMEN

Phthalocyanines are second-generation photosensitizers with photophysical and photochemical properties improved, in comparison to the first-generation. Also, these have shown to be phototoxic against several types of microorganisms and tumor cells. However, challenges such as low solubility in the physiological environment make its single administration unfeasible. Therefore, this review discusses a unique combination of phthalocyanine-loaded in drug delivery carriers for photodynamic therapy in different pathologies' treatment, including nanoemulsion, liposomes, and lipid nanoparticles in an attempt to overcome low solubility drawback. Furthermore, the latest advances to elucidating its mechanisms of action are shown. Subsequently, the manuscript was divided into ten different types of phthalocyanines for medical applications, with a description of their definitions and applications, summarizing the latest preclinical results founded in recent literature.


Asunto(s)
Indoles , Fotoquimioterapia , Fármacos Fotosensibilizantes , Indoles/farmacología , Indoles/uso terapéutico , Isoindoles , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA