RESUMEN
The current gold standard treatment for canine mast cell tumors (MCT) uses vinblastine sulfate (VBL) as chemotherapy, although tyrosine kinase inhibitors (TKI) have recently been shown to be worthy candidates for treatment. This systematic review aimed to analyze the overall survival (OS), progression-free survival (PFS), overall response rate (ORR), and complete (CR) or partial response (PR) in dogs with MCT treated with TKI compared to standard VBL treatment. The systematic review was registered in the Open Science Framework (OSF) database under the identifier 10.17605/OSF.IO/WYPN4 (https://osf.io/). An electronic search was performed in nine databases. References from eligible studies were also selected to find more registers. A total of 28 studies met the eligibility criteria, and one more was recovered from the references of eligible studies, totaling 29 selected studies. The overall response rate, complete response, and partial response were higher in dogs treated with tyrosine kinase inhibitors than in dogs treated with vinblastine. The overall survival and progression-free survival of vinblastine-treated dogs were higher compared to tyrosine kinase inhibitors-treated dogs. Dogs with mutated KIT treated with tyrosine kinase inhibitors have longer overall survival and progression-free survival compared to those treated with vinblastine. It is important to consider the limitation of the study which should temper the interpretation of the results, videlicet, the extracted data lacked sample standardization and included variables such as animal characteristics, mutation detection methods, tumor characteristics, and treatment types which may have influenced the outcome of the study. Systematic review registration: https://osf.io/, identifier: 10.17605/OSF.IO/WYPN4.
RESUMEN
The extracellular matrix (ECM) consists of various molecules that support tissue cells, including proteins, fibronectin, laminin, collagen IV, and glycosaminoglycans. In addition to interactions between the ECM and cells, the ECM also interacts with chemokines, and growth factors, and these interactions ensure cell survival, development, differentiation, and migration of both immune system cells and tumor cells. This review provides an overview of the mechanisms of interaction between the ECM and chemokines, focusing on the tumor microenvironment and the modulation of these elements as a target for therapies in several types of cancer.