Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 5(10): 802-4, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16951675

RESUMEN

The magnetocaloric effect (MCE) is the basis for magnetic refrigeration, and can replace conventional gas compression technology due to its superior efficiency and environment friendliness. MCE materials must exhibit a large temperature variation in response to an adiabatic magnetic-field variation and a large isothermal entropic effect is also expected. In this respect, MnAs shows the colossal MCE, but the effect appears under high pressures. In this work, we report on the properties of Mn(1-x)Fe(x)As that exhibit the colossal effect at ambient pressure. The MCE peak varies from 285 K to 310 K depending on the Fe concentration. Although a large thermal hysteresis is observed, the colossal effect at ambient pressure brings layered magnetic regenerators with huge refrigerating power closer to practical applications around room temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA