RESUMEN
Viruses belonging to the Flaviviridae family are found and distributed in most of the tropical and sub-tropical regions of the world. The genus has more than 56 members, most of which cause clinical symptoms in humans. The clinical diagnosis of dengue requires laboratory confirmation because of the similarity of symptoms with a series of other acute fevers and the primary use antibodies or antigens for detection. In this work, peptides E(1) and E(2) of the envelope protein (E) of the dengue virus were mapped using bioinformatics methods. These peptides were then expressed in a prokaryotic system and purified. An indirect ELISA for antibodies IgG and IgM from laboratory samples previously characterised was then used with the peptides to detect anti-dengue antibodies. For IgG using the peptide E(1), the sensitivity of the indirect ELISA was 88.3% and the specificity was 56%; using the peptide E(2), the sensitivity was 90% and the specificity was 59%; and using a combination of both peptides, the sensitivity was 93.3% and the specificity was 78%. For IgM using the peptide E(1), the sensitivity was 88% and the specificity was 66%; using the peptide E(2), the sensitivity was 88% and the specificity was 69%; and when used in combination, the peptides E(1)/E(2) demonstrated a sensitivity of 90% and a specificity of 86%. These results indicate that the use of the E(1) and E(2) peptides of the E protein are an alternative for serological diagnosis of dengue fever.