Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 330: 117169, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621314

RESUMEN

Vermicomposting is the bio-oxidation and stabilization of organic matter involving relationships between the action of earthworms and microorganisms and the activation and dynamics of several enzyme activities. Semi-arid farmers to make (extra) money and organic production, produce their vermicompost using plant residues and animal manure, but there is no information about the final product generated. Thus, this study aimed to analyze the potential of vermicomposting with mixtures of animal manure and vegetable leaves in the development of Eisenia foetida, microbial biomass, and enzymatic activity in the semi-arid region, Brazil. The experimental design applied was randomized block in a 6 × 4 factorial scheme with four replicates, with six treatments (mixtures of cattle manure, goat manure, cashew leaves, and catanduva leaves) and evaluated at four-time intervals (30, 60, 90, and 120 days of vermicomposting). The treatments were placed in polyethylene pots in the same site, environmental conditions, and residues proportions as used by farmers. The characteristics analyzed were the number of earthworms (NE), total earthworm biomass (TEB) and earthworm multiplication index (MI), microbial biomass carbon (MBC), and activities of enzymes ß-glucosidase, dehydrogenase, alkaline and acid phosphatases. The cattle manure vermicomposted shows the highest average values observed for NE, MI, TEB, MBC, and enzymatic activity, regardless of the plant leaves mix. In general, the enzymes activities were found in the descending order of ß-glucosidase > alkaline phosphatase > dehydrogenase > acid phosphatase. The maturation dynamics of vermicompost were characterized by a decline in the microbial population and number and biomass of earthworms in the substrate and consequently a decrease in new enzyme synthesis and degradation of the remaining enzyme pool. Microbial biomass and enzymatic activity were indicators for changes in the quality of vermicompost.


Asunto(s)
Celulasas , Oligoquetos , Animales , Bovinos , Biomasa , Carbono/metabolismo , Celulasas/metabolismo , Estiércol , Oligoquetos/metabolismo , Oxidorreductasas/metabolismo , Suelo , Verduras/metabolismo
2.
Water Res ; 145: 153-161, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30142513

RESUMEN

In this work, water-based paint (WBP) wastewater was treated using a natural coagulant, Moringa oleifera aqueous extract (MOAE), fortified with Ca2+ (from nitrate and chloride salts). In order to improve the quality of the treated wastewater and render it suitable for disposal, an electrolytic flow process was associated with the wastewater treatment using a filter-press reactor with a boron doped diamond (BDD) electrode. The feasibility of the treatment was evidenced by the reuse of the treated wastewater in the production of a new paint (manufactured by the company supplying the raw wastewater), whose quality was compatible with the water used by the manufacturer. The best conditions for the coagulation-flocculation process involved the use of 80 mL of MOAE (50 g/L of MO and 0.125 mol/L of Ca2+) for every 1.0 L of wastewater at pH 6.5. The limiting current density (35 mA/cm2) and an electrolysis time of 90 min (charge passed of 3.68 A h/L) were used in the electrochemical treatment. Biotoxicity assays using the brine shrimp Artemia salina revealed that the mortality (in %) of microcrustaceans was reduced from 100% (raw wastewater) to only 11% at the end of the electrolysis process, in addition to eliminating the strong odor and 85% of the organic load. Moreover, microbiological tests showed that the number of mesophiles decreased by more than six orders of magnitude and there was no growth of thermotolerant coliforms (TC).


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Técnicas Electroquímicas , Electrodos , Electrólisis , Floculación , Pintura , Eliminación de Residuos Líquidos , Aguas Residuales
3.
Water Res ; 101: 467-475, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27295621

RESUMEN

This paper describes and discusses an investigation into the treatment of paint manufacturing wastewater (water-based acrylic texture) by coagulation (aluminum sulfate) coupled to electrochemical methods (BDD electrode). Two proposals are put forward, based on the results. The first proposal considers the feasibility of reusing wastewater treated by the methods separately and in combination, while the second examines the possibility of its disposal into water bodies. To this end, parameters such as toxicity, turbidity, color, organic load, dissolved aluminum, alkalinity, hardness and odor are evaluated. In addition, the proposal for water reuse is strengthened by the quality of the water-based paints produced using the wastewater treated by the two methods (combined and separate), which was evaluated based on the typical parameters for the quality control of these products. Under optimized conditions, the use of the chemical coagulation (12 mL/L of Al2(SO4)3 dosage) treatment, alone, proved the feasibility of reusing the treated wastewater in the paint manufacturing process. However, the use of the electrochemical method (i = 10 mA/cm(2) and t = 90 min) was required to render the treated wastewater suitable for discharge into water bodies.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Técnicas Electroquímicas , Electrodos , Oxidación-Reducción , Pintura , Contaminantes Químicos del Agua , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA