RESUMEN
In the developing retina, precise coordination of cell proliferation, differentiation, and survival is essential for proper retinal maturation and function. We have previously reported evidence that interleukin-4 (IL-4) plays critical roles in neuronal differentiation and survival during retinal development. However, little is known about the role of IL-4 on retinal cell proliferation. In the current study, we investigated if IL-4 regulates cell proliferation induced by epidermal growth factor (EGF) and by fibroblast growth factor 2 (FGF2) in primary retinal cell cultures obtained from newborn rats. First, we show that EGF and FGF2 act as mitogens for glial cells, increasing proliferation of these cells in the retina. EGF- and FGF2-induced mitogenesis requires activation of distinct cell-intrinsic signals. In retinal cells exposed to FGF2, IL-4 downregulates p53 levels (a protein whose activation induces cell-cycle arrest) and increases mitogenic responsiveness to FGF2 through activation of protein kinase A (PKA) pathway. Conversely, in retinal cells exposed to EGF, IL-4 downregulates cyclin D1 levels (a protein required for cell-cycle progression), upregulates p53 levels, and decreases mitogenic responsiveness to EGF. The inhibitory effect induced by IL-4 on retinal cells exposed to EGF requires activation of Janus kinase 3 (JAK3), but not activation of PKA. Based on previous and current findings, we propose that IL-4 serves as a node of signal divergence, modulating multiple cell-intrinsic signals (e.g., cyclin D1, p53, JAK3, and PKA) and mitogenic responsiveness to cell-extrinsic signals (e.g., FGF2 and EGF) to control cell proliferation, differentiation, and survival during retinal development.
Asunto(s)
Ciclina D1 , Factor de Crecimiento Epidérmico , Ratas , Animales , Ciclina D1/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Interleucina-4/farmacología , Interleucina-4/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Proteína p53 Supresora de Tumor , Proliferación Celular , Retina/metabolismoRESUMEN
Protein kinase C (PKC) pathway plays important roles in different phenomena in nervous system development. Our previous data demonstrated that phorbol 12-myristate 13-acetate (PMA) treatment, a PKC activator, for 48 h decreases retinal cells proliferation by a mechanism mediated by muscarinic receptor activation, involving a decrease in M1 receptors levels. The aim of this work was to analyze how PMA interferes in the levels of cell cycle control proteins p53, p21 and cyclin D1 and also to investigate its influence on M3 receptor levels. Our results show that PMA (50 ng/mL) produces a significant increase in p21 and p53 levels, decreases cyclin D1 levels, and also enhances M3 receptors levels in cell cultures. Evaluating the postnatal retinal tissue development until 30 days, we observed that tissue differentiation is accompanied by an increase in M3 and p21 levels. Based on our results we suggest that PMA treatment is promoting a change in muscarinic receptors expression mimicking the pattern observed during tissue differentiation, indicating that PMA is probably accelerating the cholinergic differentiation in rat retinal cell cultures.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Ésteres del Forbol/farmacología , Receptor Muscarínico M3/metabolismo , Neuronas Retinianas/efectos de los fármacos , Animales , Células Cultivadas , Ciclina D1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ratas , Neuronas Retinianas/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
One of the central issues in neuroscience today is the study of the mechanisms of neuronal survival. Since the discovery of nerve growth factor (almost 60 years ago), many groups have clearly demonstrated the central role of neurotrophins on the regulation of neuronal cell survival during developmental stages as well as during adult life. However, neurotrophins are not alone in regulating neuronal survival, and many groups have demonstrated the effect of different cytokines on this phenomenon. In this brief review we will address the effect of interleukins (IL), particularly IL-2, IL-6, and IL-4, on the survival of neuronal cells.
Asunto(s)
Interleucinas/metabolismo , Neuronas/citología , Animales , Supervivencia Celular , Humanos , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismoRESUMEN
Since 1973, multiple effects of basic fibroblast growth factor have been described in a large number of cells. These effects include proliferation, survival and differentiation. The aim of this work was to study the intracellular pathways involved in the basic fibroblast growth factor (FGF2) effect on rat retinal cells proliferation in vitro. Our data show that treatment with FGF2 increases proliferation in a concentration- and time-dependent manner. The effect of 25 ng/ml FGF2 was blocked by 10 microM genistein, a tyrosine kinase inhibitor and by 25 microM LY294002, a PI3 kinase inhibitor. The concomitant treatment with 0.3 microM chelerythrine chloride, a protein kinase C inhibitor, and 6.25 microM LY294002 also inhibited the effect of FGF2. Our results suggest that the proliferative effect of FGF2 on retinal cell cultures involves the activation of distinct kinases.