Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35454408

RESUMEN

The low carbon martensitic stainless AWS 410NiMo steel has in its chemical composition 13% chromium, 4% nickel, and 0.4% molybdenum (wt.%) and is used in turbine recovery, rotors, and high-pressure steam pump housings due to its resistance to impact at low temperatures, as well as to corrosion and cavitation. Those applications of the AWS 410NiMo steel frequently demand repair, which is performed by welding or cladding. Arc welding is a well-established technique for joining materials and presents several parameters that influence the mechanical performance of the weld bead. Although numerous welding processes exist, optimizing welding parameters for specific applications and materials is always challenging. The present work deals with a systematic study to verify the correlation between the pulsed fluxed core arc welding (FCAW) parameters, namely pulse current and frequency, welding speed, and contact tip work distance (CTWD), and the bead morphology, microstructure formation, residual stress, and hardness of the martensitic clad. The substrate used was the AISI 1020 steel, and the AWS 410NiMo steel was the filler metal for clad deposition. From the initial nine (9) samples, three (3) were selected for in-depth characterization. Lower heat input resulted in lower dilution, more elevated hardness, and lower compressive residual stresses. Therefore, the results highlight the need for selecting the proper heat input, even when using a pulsed FCAW procedure, to achieve the desired performance of the clad. In the present case, a higher heat input appears to be more advantageous owing to the lower convexity index, smooth hardness transition between fusion and heat-affected zones in addition to more elevated compressive stresses.

2.
Sci Rep ; 9(1): 15898, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685926

RESUMEN

Due to their applicability for manufacturing dense, hard and stable coatings, Physical Vapor Deposition (PVD) techniques, such as High Power Impulse Magnetron Sputtering (HiPIMS), are currently used to deposit transition metal nitrides for tribological applications. Cr-Al-N is one of the most promising ceramic coating systems owing to its remarkable mechanical and tribological properties along with excellent corrosion resistance and high-temperature stability. This work explores the possibility of further improving Cr-Al-N coatings by modulation of its microstructure. Multilayer-like Cr1-xAlxN single films were manufactured using the angular oscillation of the substrate surface during HiPIMS. The sputtering process was accomplished using pulse frequencies ranging from 200 to 500 Hz and the resulting films were evaluated with respect to their hardness, Young's modulus, residual stresses, deposition rate, crystallite size, crystallographic texture, coating morphology, chemical composition, and surface roughness. The multilayer-like structure, with periodicities ranging from 250 to 550 nm, were found associated with misorientation gradients and small-angle grain boundaries along the columnar grains, rather than mesoscopic chemical modulation of the microstructure. This minute modification of microstructure along with associated compressive residual stresses are concluded to explain the increased hardness ranging from 25 to 30 GPa, which is at least 20% over that expected for a film of the same chemical composition grown by a conventional PVD processing route.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA