RESUMEN
Background: Tuberculosis (TB) is currently the second greatest killer worldwide and is caused by a single infectious agent. Since Bacillus Calmette−Guérin (BCG) is the only vaccine currently in use against TB, studies addressing the protective role of BCG in the context of inducible surface biomarkers are urgently required for TB control. Methods: In this study, groups of HIV-negative adult healthy donors (HD; n = 22) and neonate samples (UCB; n = 48) were voluntarily enrolled. The BCG Moreau strain was used for the in vitro mononuclear cell infections. Subsequently, phenotyping tools were used for surface biomarker detection. Monocytes were assayed for TLR4, B7-1, Dectin-1, EP2, and TIM-3 expression levels. Results: At 48 h, the BCG Moreau induced the highest TLR4, B7-1, and Dectin-1 levels in the HD group only (p-value < 0.05). TIM-3 expression failed to be modulated after BCG infection. At 72 h, BCG Moreau equally induced the highest EP2 levels in the HD group (p-value < 0.005), and higher levels were also found in HD when compared with the UCB group (p-value < 0.05). Conclusions: This study uncovers critical roles for biomarkers after the instruction of host monocyte activation patterns. Understanding the regulation of human innate immune responses is critical for vaccine development and for treating infectious diseases.