Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Metabolites ; 10(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003305

RESUMEN

There are, still, limitations to predicting the occurrence and prognosis of neurological disorders. Biomarkers are molecules that can change in different conditions, a feature that makes them potential tools to improve the diagnosis of disease, establish a prognosis, and monitor treatments. Metabolites can be used as biomarkers, and are small molecules derived from the metabolic process found in different biological media, such as tissue samples, cells, or biofluids. They can be identified using various strategies, targeted or untargeted experiments, and by different techniques, such as high-performance liquid chromatography, mass spectrometry, or nuclear magnetic resonance. In this review, we aim to discuss the current knowledge about metabolites as biomarkers for neurological disorders. We will present recent developments that show the need and the feasibility of identifying such biomarkers in different neurological disorders, as well as discuss relevant research findings in the field of metabolomics that are helping to unravel the mechanisms underlying neurological disorders. Although several relevant results have been reported in metabolomic studies in patients with neurological diseases, there is still a long way to go for the clinical use of metabolites as potential biomarkers in these disorders, and more research in the field is needed.

2.
Front Mol Neurosci ; 13: 604158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488359

RESUMEN

Epilepsies are chronic neurological diseases that affect approximately 2% of the world population. In addition to being one of the most frequent neurological disorders, treatment for patients with epilepsy remains a challenge, because a proportion of patients do not respond to the antiseizure medications that are currently available. This results in a severe economic and social burden for patients, families, and the healthcare system. A characteristic common to all forms of epilepsy is the occurrence of epileptic seizures that are caused by abnormal neuronal discharges, leading to a clinical manifestation that is dependent on the affected brain region. It is generally accepted that an imbalance between neuronal excitation and inhibition generates the synchronic electrical activity leading to seizures. However, it is still unclear how a normal neural circuit becomes susceptible to the generation of seizures or how epileptogenesis is induced. Herein, we review the results of recent proteomic studies applied to investigate the underlying mechanisms leading to epilepsies and how these findings may impact research and treatment for these disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA