Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 11(4)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35453336

RESUMEN

Aerobic exercise training (ET) produces beneficial adaptations in skeletal muscles, including angiogenesis. The renin-angiotensin system (RAS) is highly involved in angiogenesis stimuli. However, the molecular mechanisms underlying capillary growth in skeletal muscle induced by aerobic ET are not completely understood. This study aimed to investigate the effects of volume-dependent aerobic ET on skeletal muscle angiogenesis involving the expression of miRNAs-27a and 27b on RAS and oxidant-antioxidant balance. Eight-week-old female Wistar rats were divided into three groups: sedentary control (SC), trained protocol 1 (P1), and trained protocol 2 (P2). P1 consisted of 60 min/day of swimming, 5×/week, for 10 weeks. P2 consisted of the same protocol as P1 until the 8th week, but in the 9th week, rats trained 2×/day, and in the 10th week, trained 3×/day. Angiogenesis and molecular analyses were performed in soleus muscle samples. Furthermore, to establish ET-induced angiogenesis through RAS, animals were treated with an AT1 receptor blocker (losartan). Aerobic ET promoted higher VO2 peak and exercise tolerance values. In contrast, miRNA-27a and -27b levels were reduced in both trained groups, compared with the SC group. This was in parallel with an increase in the ACE1/Ang II/VEGF axis, which led to a higher capillary-to-fiber ratio. Moreover, aerobic ET induced an antioxidant profile increasing skeletal muscle SOD2 and catalase gene expression, which was accompanied by high nitrite levels and reduced nitrotyrosine concentrations in the circulation. Additionally, losartan treatment partially re-established the miRNAs expression and the capillary-to-fiber ratio in the trained groups. In summary, aerobic ET promoted angiogenesis through the miRNA-27a/b-ACE1/Ang II/VEGF axis and improved the redox balance. Losartan treatment demonstrates the participation of RAS in ET-induced vascular growth. miRNAs and RAS components are promising potential targets to modulate angiogenesis for combating vascular diseases, as well as potential biomarkers to monitor training interventions and physical performance.

2.
J Mol Cell Cardiol ; 90: 111-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26705058

RESUMEN

We tested the effects of early mesenchymal stem cell (MSC) therapy associated with endurance exercise on the structural and functional cardiac remodeling of rats with myocardial infarctation (MI). Male Wistar rats (40 days old) were divided into 6 groups: control and exercise sham; control and exercise MI; and control and exercise MI MSC. MI was surgically induced and bone marrow-derived MSCs were immediately injected via caudal vein (concentration: 1 × 10(6 )cells). Twenty-four hours later ET groups exercised on a treadmill (5 days/week; 60 min/day; 60% of maximal running velocity) for 12 weeks. Structural and functional changes were determined by echocardiography. Contractility and intracellular global calcium ([Ca(2 +)]i) transient were measured in myocytes from the left ventricular (LV) non-infarcted area. Calcium regulatory proteins were measured by Western blot. MI increased (p < 0.05) heart, ventricular and LV weights and its ratios to body weight; LV internal dimension in diastole (LVID-D) and in systole (LVID-S) and LV free wall in diastole (LVFW-D), but reduced the thickness of interventricular septum in systole (IVS-S), ejection fraction (EF) and fractional shortening (FS). MI augmented (p < 0.05) the times to peak and to half relaxation of cell shortening as well as the amplitude of the [Ca(2 +)]i transient and the times to peak and to half decay. Early MSCs therapy restored LVFW-D, IVS-S and the amplitude and time to half decay of the [Ca(2 +)]i transient. Early endurance exercise intervention increased (p < 0.05) LVFW-S, IVS-S, EF and FS, and reduced the times to peak and to half relaxation of cell shortening, and the amplitude of the [Ca(2 +)]i transient. Exercise training also increased the expression of left ventricular SERCA2a and PLBser16. Nevertheless, the combination of these therapies did not cause additive effects. In conclusion, combining early MSCs therapy and endurance exercise does not potentiate the benefits of such treatments to structural and functional cardiac remodeling in infarcted rats.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Infarto del Miocardio/terapia , Condicionamiento Físico Animal , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diástole , Ecocardiografía , Expresión Génica , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Contracción Miocárdica/fisiología , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Resistencia Física , Ratas , Ratas Wistar , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sístole , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA