RESUMEN
The fermented beverage industry is always pursuing alternatives to make products that delight consumers with special or unique characteristics. The identification and improvement of new yeast strains emerge as an opportunity; however, wild strains usually have a limitation in maltose fermentation and/or off-flavors production. Here we report the production of a Blond-style ale beer using a bioethanol isolated strain (LBGA-287) with flavor complexity approved in sensorial panels. LBGA-287 also showed an increase in maltose consumption, growth and fermentation rates when compared to the commercial yeast. Using qPCR analysis, genes related to the (i) efficiency of fermentation (ii) production of aromas/off-flavors, and (iii) metabolization of carbohydrates were found as differentially expressed in the isolated strains when compared to industrial yeast. This suggests that LBGA-287 could have an important impact on beer production, improving brewing efficiency, quality and diversity of this beverage, and most importantly satisfying the final consumer.
Asunto(s)
Cerveza , Saccharomyces cerevisiae , Cerveza/análisis , Etanol/análisis , Fermentación , Bebidas Fermentadas , Saccharomyces cerevisiae/genéticaRESUMEN
BACKGROUND: Alzheimer's disease (AD) is the main cause of dementia and it is a progressive neurogenerative disease characterized by the accumulation of neurofibrillary tangles and senile plaques. There is currently no cure; however, some treatments are available to slow down the progression of the disease, including gene therapy, which has been investigated to have great potential for the treatment of AD. OBJECTIVE: The aim of this review was to identify the efficacy of gene therapy to restore cognition in AD. METHODS: A systematic review was carried out using papers published up to May 2020 and available in the Web of Science, Scopus, and Medline/PUBMED databases. Articles were considered for inclusion if they were original researches that investigated the effects of gene therapy on cognition in AD. The methodological quality of the selected studies was evaluated using the Risk of Bias Tool for Animal Intervention Studies (SYRCLE's Rob tool) and the Jadad Scale. RESULTS: Most preclinical studies obtained positive results in improving memory and learning in mice that underwent treatment with gene therapy. On the other hand, clinical studies have obtained inconclusive results related to the delivery methods of the viral vector used in gene therapy. CONCLUSION: Gene therapy has shown a great potential for the treatment of AD in preclinical trials, but results should be interpreted with caution since preclinical studies presented limitations to predict the efficacy of the treatment outcome in humans.
Asunto(s)
Envejecimiento/genética , Enfermedad de Alzheimer/terapia , Cognición , Terapia Genética/métodos , Vectores Genéticos/uso terapéutico , Animales , Progresión de la Enfermedad , Humanos , Memoria , RatonesRESUMEN
Serratia marcescens has emerged as an important opportunistic pathogen responsible for nosocomial and severe infections. Here, we determined phenotypic and molecular characteristics of 54 S. marcescens isolates obtained from patient samples from intensive-care-unit (ICU) and neonatal intensive-care-unit (NIUC) of a Brazilian tertiary hospital. All isolates were resistant to beta-lactam group antibiotics, and 92.6% (50/54) were not susceptible to tigecycline. Furthermore, 96.3% showed intrinsic resistance to polymyxin E (colistin), a last-resort antibiotic for the treatment of infections caused by MDR (multidrug-resistant) Gram-negative bacteria. In contrast, high susceptibility to other antibiotics such as fluoroquinolones (81.5%), and to aminoglycosides (as gentamicin 81.5%, and amikacin 85.2%) was found. Of all isolates, 24.1% were classified as MDR. The presence of resistance and virulence genes were examined by PCR and sequencing. All isolates carried KPC-carbapenemase (bla KPC ) and extended spectrum beta-lactamase bla TEM genes, 14.8% carried bla OXA- 1, and 16.7% carried bla CTX-M- 1 group genes, suggesting that bacterial resistance to ß-lactam antibiotics found may be associated with these genes. The genes SdeB/HasF and SdeY/HasF that are associated with efflux pump mediated drug extrusion to fluoroquinolones and tigecycline, respectively, were found in 88.9%. The aac(6')-Ib-cr variant gene that can simultaneously induce resistance to aminoglycoside and fluoroquinolone was present in 24.1% of the isolates. Notably, the virulence genes to (i) pore-forming toxin (ShlA); (ii) phospholipase with hemolytic and cytolytic activities (PhlA); (iii) flagellar transcriptional regulator (FlhD); and (iv) positive regulator of prodigiosin and serratamolide production (PigP) were present in 98.2%. The genetic relationship among the isolates determined by ERIC-PCR demonstrated that the vast majority of isolates were grouped in a single cluster with 86.4% genetic similarity. In addition, many isolates showed 100% genetic similarity to each other, suggesting that the S. marcescens that circulate in this ICU are closely related. Our results suggest that the antimicrobial resistance to many drugs currently used to treat ICU and NIUC patients, associated with the high frequency of resistance and virulence genes is a worrisome phenomenon. Our findings emphasize the importance of active surveillance plans for infection control and to prevent dissemination of these strains.
RESUMEN
Beta-thalassaemia (BT) is classified according to blood transfusion requirement as minor (BTMi), intermedia (BTI) and major (BTM). BTM is the most severe form, requiring regular transfusions while transfusion need is only occasional in BTI. Differential gene expression between patients has not been assessed so far. Here, we evaluated the global gene expression profiles during differentiation of human erythroid cells of two patients carrying the same mutation [CD39, (C â T)], though displaying different phenotypes (BTI and BTM). Considering the role of reactive oxygen species (ROS) in the pathophysiology of thalassaemia, we focused on differentially expressed genes involved in metabolic pathways triggered by ROS, such as inflammation and apoptosis, and, from these, we selected the Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APEX1) and High Mobility Group Box1 (HMGB1) genes, whose role in BT is not well established. An in-depth expression analysis of transcriptional and protein levels in patients carrying a range of mutations associated with BT phenotypes indicated that APEX1 was increased in both BTI and BTM. Furthermore, higher amounts of HMGB1 was found in the plasma of BTI patients. Our findings suggest that these proteins have important roles in BT and could represent new targets for further studies aiming to improve the management of the disease.
Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Proteína HMGB1/genética , Estrés Oxidativo , Transducción de Señal , Transcriptoma , Talasemia beta/genética , Talasemia beta/metabolismo , Adulto , Apoptosis , Apirasa/metabolismo , Biomarcadores , Estudios de Casos y Controles , Diferenciación Celular/genética , Biología Computacional/métodos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Células Eritroides/citología , Células Eritroides/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Proteína HMGB1/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Talasemia beta/diagnósticoRESUMEN
The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás. It was supported by grants from CAPES and FAPEG. Twenty-seven speakers from 15 countries presented their research related to fungal stress biology. The Symposium was divided into seven topics: 1. Fungal biology in extreme environments; 2. Stress mechanisms and responses in fungi: molecular biology, biochemistry, biophysics, and cellular biology; 3. Fungal photobiology in the context of stress; 4. Role of stress in fungal pathogenesis; 5. Fungal stress and bioremediation; 6. Fungal stress in agriculture and forestry; and 7. Fungal stress in industrial applications. This article provides an overview of the science presented and discussed at ISFUS-2017.
Asunto(s)
Hongos/fisiología , Hongos/patogenicidad , Estrés Fisiológico , Brasil , Microbiología Ambiental , Microbiología Industrial , MicologíaRESUMEN
Klebsiella pneumoniae is an important opportunistic pathogen that commonly causes nosocomial infections and contributes to substantial morbidity and mortality. We sought to investigate the antibiotic resistance profile, pathogenic potential and the clonal relationships between K. pneumoniae (n = 25) isolated from patients and sources at a tertiary care hospital's intensive care units (ICUs) in the northern region of Brazil. Most of K. pneumoniae isolates (n = 21, 84%) were classified as multidrug resistant (MDR) with high-level resistance to ß-lactams, aminoglycosides, quinolones, tigecycline, and colistin. All the 25 isolates presented extended-spectrum beta-lactamase-producing (ESBL), including carbapenemase producers, and carried the bla KPC (100%), bla TEM (100%), bla SHV variants (n = 24, 96%), bla OXA-1 group (n = 21, 84%) and bla CTX-M-1 group (n = 18, 72%) genes. The K2 serotype was found in 4% (n = 1) of the isolates, and the K1 was not detected. The virulence-associated genes found among the 25 isolates were mrkD (n = 24, 96%), fimH-1 (n = 22, 88%), entB (100%), iutA (n = 10, 40%), ybtS (n = 15, 60%). The genes related with efflux pumps and outer membrane porins found were AcrAB (100%), tolC (n = 24, 96%), mdtK (n = 22, 88%), OmpK35 (n = 15, 60%), and OmpK36 (n = 7, 28%). ERIC-PCR was employed to determine the clonal relationship between the different isolated strains. The obtained ERIC-PCR patterns revealed that the similarity between isolates was above 70%. To determine the sequence types (STs) a multilocus sequence typing (MLST) assay was used. The results indicated the presence of high-risk international clones among the isolates. In our study, the wide variety of MDR K. pneumoniae harboring ß-lactams and virulence genes strongly suggest a necessity for the implementation of effective strategies to prevent and control the spread of antibiotic resistant infections.
RESUMEN
This study evaluated the effects of the Biosilicate® and poly (D,L-lactic-co-glycolic) acid composites on bone repair in a tibial bone defect model in rats by means of using histological evaluation (histopathological and morphometric analysis) and gene expression analysis. Eighty male Wistar rats (12 weeks old, weighing ±300 g) were randomly divided into two groups: Biosilicate® group (BG) and Biosilicate® /PLGA group (BG/PLGA). Each group was euthanized at 3, 7, 14, and 21 days after surgery (n = 10 animals per time point). The main findings showed that the incorporation of PLGA into BG had a significant effect on the morphological structure of the material, accelerating mass loss, decreasing the pH and increasing the calcium release. Furthermore, histologic analysis revealed that the BG/PLGA showed increased material degradation, accompanied by higher bone formation compared to BG, after 21 days of implantation. In addition, qRT-PCR analysis showed that BG/PLGA induced an upregulation of the osteogenic genes related to BMP4, Runx2, ALP, and OC. These results show that the present BG/PLGA composite may be used as a bone graft for inducing bone repair. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 63-71, 2017.
Asunto(s)
Sustitutos de Huesos , Vidrio/química , Poliglactina 910 , Tibia , Andamios del Tejido/química , Animales , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Masculino , Poliglactina 910/química , Poliglactina 910/farmacología , Porosidad , Ratas , Ratas Wistar , Tibia/lesiones , Tibia/metabolismo , Tibia/patología , Ingeniería de Tejidos/métodosRESUMEN
Hereditary persistence of fetal hemoglobin (HPFH) is characterized by increased levels of Hb F during adult life. Nondeletional forms of HPFH are characterized by single base mutations in the (A)gamma and (G)gamma promoters, resulting in an increase of Hb F ranging from 3 to 20% in heterozygotes. Many point mutations in this region have been described, including the (A)gamma -195 (C>G) mutation that causes the Brazilian type of HPFH (HPFH-B). To better understand this mechanism, we have developed HPFH-B transgenic mice. mRNA levels of human gamma-globin of -195 transgenic mice were clearly higher when compared with control transgenic mice bearing a wild type sequence of the gamma promoter. Thus, our data indicate that the -195 mutation is the unique cause of elevation of Hb F in Brazilian HPFH. These results could provide us with an opportunity to study the modifying effects of the Hb F in the phenotype of sickle cell disease and beta-thalassemia (beta-thal).