Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 28(31): 42261-42274, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33797721

RESUMEN

Shallow urban polluted reservoirs at tropical regions can be hotspots for CO2 and CH4 emissions. In this study, we investigated the relationships between eutrophication and GHG emissions in a highly urbanized tropical reservoir in São Paulo Metropolitan Area (Brazil). CO2 and CH4 fluxes and limnological variables (water and sediment) were collected at three sampling stations classified as hypereutrophic and eutrophic. Analysis of variance (ANOVA) and the principal component analysis (PCA) determined the most significant parameters to CO2 and CH4 fluxes. ANOVA showed significant differences of CO2 and CH4 fluxes between sampling stations with different trophic state. The hypereutrophic station showed higher mean fluxes for both CO2 and CH4 (5.43 ± 1.04 and 0.325 ± 0.167 g m-2 d-1, respectively) than the eutrophic stations (3.36 ± 0.54 and 0.060 ± 0.005 g m-2 d-1). The PCA showed a strong relationship between nutrients in the water column (surface and bottom) and GHG fluxes. We concluded that GHG fluxes were higher whenever the trophic state increases as observed previously in temperate and tropical reservoirs. High concentrations of nutrients in the water column in the studied area support the high production of autotrophic biomass that, when sedimented, ends up serving as organic matter for CH4 producers. These outcomes reinforce the necessity of water quality improvement and eutrophication mitigation in highly urbanized reservoirs in tropical regions.


Asunto(s)
Dióxido de Carbono , Gases de Efecto Invernadero , Brasil , Dióxido de Carbono/análisis , Eutrofización , Gases de Efecto Invernadero/análisis , Metano/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA