Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067932

RESUMEN

The optimization of network topology is crucial to achieve efficient data transmission in wireless sensor networks. Recently it has been proven that emerging open data sources can be used for modeling the structures of heterogeneous urban sensor networks. With this, leveraging real location data of various networked and sensing devices became feasible and essential. This approach enables the construction and analysis of more accurate representations based on frequently updated actual network infrastructure topology data, as opposed to using synthetic models or test environments. The presented modeling method serves as the basis for the designed architecture and implemented research environment. This paper introduces a set of algorithms which transform devices' location data into graph-based wireless network connectivity models. Each algorithm is thoroughly discussed and evaluated. Moreover, static (momentary) and dynamic (time-spanning) network topologies are constructed in four large Polish cities based on publicly available data. Multidimensional simulation-based analysis is conducted to investigate the characteristics of the modeled structures. Directions for further research are suggested as well.

2.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36501964

RESUMEN

Epidemics and pandemics dramatically affect mobility trends around the world, which we have witnessed recently and expect more of in the future. A global energy crisis is looming ahead on the horizon and will redefine the transportation and energy usage patterns, in particular in large cities and metropolitan areas. As the trend continues to expand, the need to efficiently monitor and manage smart city infrastructure, public transportation, service vehicles, and commercial fleets has become of higher importance. This, in turn, requires new methods for dissemination, collection, and processing of data from massive number of already deployed sensing devices. In order to transmit these data efficiently, it is necessary to optimize the connection structure in wireless networks. Emerging open access to real data from different types of networked and sensing devices should be leveraged. It enables construction of models based on frequently updated real data rather than synthetic models or test environments. Hence, the main objective of this article is to introduce the concept of network modeling based on publicly available geographic location data of heterogeneous nodes and to promote the use of real-life diverse open data sources as the basis of novel research related to urban sensor networks. The feasibility of designed modeling architecture is discussed and proved with numerous examples of modeled spatial and spatiotemporal graphs, which are essential in opportunistic routing-related studies using the methods which rely on graph theory. This approach has not been considered before in similar studies and in the literature.


Asunto(s)
Transportes , Tecnología Inalámbrica , Ciudades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA